Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's approach this step-by-step to determine which system of equations can be used to find [tex]\( x \)[/tex], the speed of the boat in miles per hour, and [tex]\( y \)[/tex], the speed of the current in miles per hour.
1. Understand the problem:
- The boat travels downstream with the current.
- Distance traveled downstream: 9 miles.
- Time taken for the downstream journey: 90 minutes (which is 1.5 hours).
2. Define variables:
- Let [tex]\( x \)[/tex] be the speed of the boat in still water (miles per hour).
- Let [tex]\( y \)[/tex] be the speed of the current (miles per hour).
3. Determine the effective speed:
- When the boat is traveling downstream, its effective speed is [tex]\( (x + y) \)[/tex] because the current aids the boat.
4. Use the distance formula:
- The formula for distance [tex]\( d = r \cdot t \)[/tex], where [tex]\( r \)[/tex] is the rate (or speed) and [tex]\( t \)[/tex] is the time.
- Given [tex]\( d = 9 \)[/tex] miles and [tex]\( t = 1.5 \)[/tex] hours, we can set up the equation for downstream travel:
[tex]\[ 9 = 1.5 \cdot (x + y) \][/tex]
5. Formulate the equation:
- Rearrange the equation to solve for [tex]\( (x + y) \)[/tex]:
[tex]\[ x + y = \frac{9}{1.5} \][/tex]
[tex]\[ x + y = 6 \][/tex]
- However, since we are comparing to options provided:
- The correct equation directly relating distance, speed, and time is:
[tex]\[ 9 = 1.5 \cdot (x + y) \][/tex]
From the given multiple-choice options, the correct one that matches our derived equation is:
[tex]\[ 9 = 1.5(x + y) \][/tex]
Hence, the correct answer is:
[tex]\[ 9 = 1.5(x + y) \][/tex]
1. Understand the problem:
- The boat travels downstream with the current.
- Distance traveled downstream: 9 miles.
- Time taken for the downstream journey: 90 minutes (which is 1.5 hours).
2. Define variables:
- Let [tex]\( x \)[/tex] be the speed of the boat in still water (miles per hour).
- Let [tex]\( y \)[/tex] be the speed of the current (miles per hour).
3. Determine the effective speed:
- When the boat is traveling downstream, its effective speed is [tex]\( (x + y) \)[/tex] because the current aids the boat.
4. Use the distance formula:
- The formula for distance [tex]\( d = r \cdot t \)[/tex], where [tex]\( r \)[/tex] is the rate (or speed) and [tex]\( t \)[/tex] is the time.
- Given [tex]\( d = 9 \)[/tex] miles and [tex]\( t = 1.5 \)[/tex] hours, we can set up the equation for downstream travel:
[tex]\[ 9 = 1.5 \cdot (x + y) \][/tex]
5. Formulate the equation:
- Rearrange the equation to solve for [tex]\( (x + y) \)[/tex]:
[tex]\[ x + y = \frac{9}{1.5} \][/tex]
[tex]\[ x + y = 6 \][/tex]
- However, since we are comparing to options provided:
- The correct equation directly relating distance, speed, and time is:
[tex]\[ 9 = 1.5 \cdot (x + y) \][/tex]
From the given multiple-choice options, the correct one that matches our derived equation is:
[tex]\[ 9 = 1.5(x + y) \][/tex]
Hence, the correct answer is:
[tex]\[ 9 = 1.5(x + y) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.