Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which ordered pair makes both inequalities true?

[tex]\[
\begin{array}{l}
y \ \textgreater \ -2x + 3 \\
y \leq x - 2
\end{array}
\][/tex]

A. (0, 0)
B. (0, -1)
C. (1, 1)


Sagot :

To determine which ordered pairs make both inequalities true, we need to analyze and test each given pair against the two inequalities:

[tex]\[ \begin{array}{l} y > -2x + 3 \\ y \leq x - 2 \end{array} \][/tex]

1. Testing the pair [tex]\((0, 0)\)[/tex]:
- For the first inequality:
[tex]\[ y > -2x + 3 \implies 0 > -2(0) + 3 \implies 0 > 3 \][/tex]
This is not true. So, [tex]\((0, 0)\)[/tex] does not satisfy the first inequality.

2. Testing the pair [tex]\((0, -1)\)[/tex]:
- For the first inequality:
[tex]\[ y > -2x + 3 \implies -1 > -2(0) + 3 \implies -1 > 3 \][/tex]
This is not true. So, [tex]\((0, -1)\)[/tex] does not satisfy the first inequality.

3. Testing the pair [tex]\((1, 1)\)[/tex]:
- For the first inequality:
[tex]\[ y > -2x + 3 \implies 1 > -2(1) + 3 \implies 1 > -2 + 3 \implies 1 > 1 \][/tex]
This is not true. So, [tex]\((1, 1)\)[/tex] does not satisfy the first inequality.

Since none of the given pairs satisfy the first inequality, we can conclude that no ordered pairs make both inequalities true.

Thus, the set of valid points is:
[tex]\[ [] \][/tex]
No ordered pairs from the given options satisfy both inequalities simultaneously.