Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's answer the question by finding a detailed, step-by-step solution.
We start with the given explicit formula for the geometric sequence:
[tex]\[ a_n = 12 \cdot (33)^{n-1} \][/tex]
A geometric sequence is a sequence of numbers in which each term after the first is found by multiplying the previous term by a constant called the common ratio. To convert the explicit formula into a recursive formula, we first need to identify the first term and the common ratio.
1. Identify the first term:
The first term, [tex]\( a_1 \)[/tex], is found by setting [tex]\( n = 1 \)[/tex]:
[tex]\[ a_1 = 12 \cdot (33)^{1-1} = 12 \cdot (33)^0 = 12 \cdot 1 = 12 \][/tex]
So, [tex]\( a_1 = 12 \)[/tex].
2. Identify the common ratio:
In the explicit formula, the common ratio [tex]\( r \)[/tex] is the base of the exponent with [tex]\( n-1 \)[/tex], which in this case is 33. Therefore:
[tex]\[ r = 33 \][/tex]
3. Write the recursive formula:
In a recursive formula for a geometric sequence, you express each term in terms of the previous term multiplied by the common ratio. The general form is:
[tex]\[ a_n = r \cdot a_{n-1} \][/tex]
So, for our sequence, we substitute [tex]\( r \)[/tex] with 33:
[tex]\[ a_n = 33 \cdot a_{n-1} \][/tex]
4. Combine with the initial term:
We already know that the first term [tex]\( a_1 = 12 \)[/tex]. Therefore, the recursive formula becomes:
[tex]\[ a_1 = 12 \][/tex]
[tex]\[ a_n = 33 \cdot a_{n-1} \quad \text{for} \quad n > 1 \][/tex]
Thus, the recursive formula matching the given explicit formula is:
[tex]\[ a_1 = 12, \quad a_n = 33 \cdot a_{n-1} \][/tex]
Therefore, the correct option is:
A. [tex]\( a_1 = 12, \quad a_n = 33 \cdot a_{n-1} \)[/tex]
We start with the given explicit formula for the geometric sequence:
[tex]\[ a_n = 12 \cdot (33)^{n-1} \][/tex]
A geometric sequence is a sequence of numbers in which each term after the first is found by multiplying the previous term by a constant called the common ratio. To convert the explicit formula into a recursive formula, we first need to identify the first term and the common ratio.
1. Identify the first term:
The first term, [tex]\( a_1 \)[/tex], is found by setting [tex]\( n = 1 \)[/tex]:
[tex]\[ a_1 = 12 \cdot (33)^{1-1} = 12 \cdot (33)^0 = 12 \cdot 1 = 12 \][/tex]
So, [tex]\( a_1 = 12 \)[/tex].
2. Identify the common ratio:
In the explicit formula, the common ratio [tex]\( r \)[/tex] is the base of the exponent with [tex]\( n-1 \)[/tex], which in this case is 33. Therefore:
[tex]\[ r = 33 \][/tex]
3. Write the recursive formula:
In a recursive formula for a geometric sequence, you express each term in terms of the previous term multiplied by the common ratio. The general form is:
[tex]\[ a_n = r \cdot a_{n-1} \][/tex]
So, for our sequence, we substitute [tex]\( r \)[/tex] with 33:
[tex]\[ a_n = 33 \cdot a_{n-1} \][/tex]
4. Combine with the initial term:
We already know that the first term [tex]\( a_1 = 12 \)[/tex]. Therefore, the recursive formula becomes:
[tex]\[ a_1 = 12 \][/tex]
[tex]\[ a_n = 33 \cdot a_{n-1} \quad \text{for} \quad n > 1 \][/tex]
Thus, the recursive formula matching the given explicit formula is:
[tex]\[ a_1 = 12, \quad a_n = 33 \cdot a_{n-1} \][/tex]
Therefore, the correct option is:
A. [tex]\( a_1 = 12, \quad a_n = 33 \cdot a_{n-1} \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.