Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the type of function represented by the given table of values, we need to analyze the relationship between the [tex]\(x\)[/tex]-values and the corresponding [tex]\(y\)[/tex]-values.
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 4 \\ \hline 2 & 8 \\ \hline 3 & 12 \\ \hline 4 & 16 \\ \hline 5 & 20 \\ \hline \end{array} \][/tex]
Here's a step-by-step process to determine the nature of the function:
1. Calculate the Differences in [tex]\(x\)[/tex]-Values:
We compute the differences between consecutive [tex]\(x\)[/tex]-values.
[tex]\[ \begin{aligned} x_2 - x_1 &= 2 - 1 = 1 \\ x_3 - x_2 &= 3 - 2 = 1 \\ x_4 - x_3 &= 4 - 3 = 1 \\ x_5 - x_4 &= 5 - 4 = 1 \\ \end{aligned} \][/tex]
These differences are all equal to 1.
2. Calculate the Differences in [tex]\(y\)[/tex]-Values:
Next, we compute the differences between consecutive [tex]\(y\)[/tex]-values.
[tex]\[ \begin{aligned} y_2 - y_1 &= 8 - 4 = 4 \\ y_3 - y_2 &= 12 - 8 = 4 \\ y_4 - y_3 &= 16 - 12 = 4 \\ y_5 - y_4 &= 20 - 16 = 4 \\ \end{aligned} \][/tex]
These differences are all equal to 4.
3. Analyze the Differences:
In a linear function, the difference between consecutive [tex]\(y\)[/tex]-values (also known as the first differences) should be constant when the [tex]\(x\)[/tex]-values are evenly spaced.
For the given table, the differences between consecutive [tex]\(x\)[/tex]-values are constant ([tex]\(1\)[/tex]), and the differences between consecutive [tex]\(y\)[/tex]-values are also constant ([tex]\(4\)[/tex]).
This consistency in the differences signifies a linear relationship.
4. Conclusion:
Since the differences between the [tex]\(y\)[/tex]-values are constant, the function represented by the table is linear.
Thus, the type of function is linear. The correct answer is:
D. linear
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 4 \\ \hline 2 & 8 \\ \hline 3 & 12 \\ \hline 4 & 16 \\ \hline 5 & 20 \\ \hline \end{array} \][/tex]
Here's a step-by-step process to determine the nature of the function:
1. Calculate the Differences in [tex]\(x\)[/tex]-Values:
We compute the differences between consecutive [tex]\(x\)[/tex]-values.
[tex]\[ \begin{aligned} x_2 - x_1 &= 2 - 1 = 1 \\ x_3 - x_2 &= 3 - 2 = 1 \\ x_4 - x_3 &= 4 - 3 = 1 \\ x_5 - x_4 &= 5 - 4 = 1 \\ \end{aligned} \][/tex]
These differences are all equal to 1.
2. Calculate the Differences in [tex]\(y\)[/tex]-Values:
Next, we compute the differences between consecutive [tex]\(y\)[/tex]-values.
[tex]\[ \begin{aligned} y_2 - y_1 &= 8 - 4 = 4 \\ y_3 - y_2 &= 12 - 8 = 4 \\ y_4 - y_3 &= 16 - 12 = 4 \\ y_5 - y_4 &= 20 - 16 = 4 \\ \end{aligned} \][/tex]
These differences are all equal to 4.
3. Analyze the Differences:
In a linear function, the difference between consecutive [tex]\(y\)[/tex]-values (also known as the first differences) should be constant when the [tex]\(x\)[/tex]-values are evenly spaced.
For the given table, the differences between consecutive [tex]\(x\)[/tex]-values are constant ([tex]\(1\)[/tex]), and the differences between consecutive [tex]\(y\)[/tex]-values are also constant ([tex]\(4\)[/tex]).
This consistency in the differences signifies a linear relationship.
4. Conclusion:
Since the differences between the [tex]\(y\)[/tex]-values are constant, the function represented by the table is linear.
Thus, the type of function is linear. The correct answer is:
D. linear
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.