Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem using Newton's Law of Cooling, we will follow the formula [tex]\( f(t) = T_0 + C e^{-k t} \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.