At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem using Newton's Law of Cooling, we will follow the formula [tex]\( f(t) = T_0 + C e^{-k t} \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.