Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's study each sequence [tex]\((u_n)\)[/tex] as defined in the problem, step-by-step.
### (a) Sequence Defined by [tex]\( u_1 = 1, u_n = \frac{u_n + 2}{u_n + 1} \)[/tex]
The sequence starts with [tex]\( u_1 = 1 \)[/tex].
- Base case: [tex]\( u_1 = 1 \)[/tex].
- Compute the next terms recursively using:
[tex]\[ u_{n+1} = \frac{u_n + 2}{u_n + 1} \][/tex]
For [tex]\( n = 5 \)[/tex]:
- [tex]\( u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{1.5 + 2}{1.5 + 1} = \frac{3.5}{2.5} = 1.4 \)[/tex]
- [tex]\( u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{1.4 + 2}{1.4 + 1} \approx 1.3846 \)[/tex]
- [tex]\( u_5 = \frac{u_4 + 2}{u_4 + 1} \approx \frac{1.3846 + 2}{1.3846 + 1} = 1.4137931034482758 \)[/tex]
Therefore, after 5 terms, the fifth term is approximately:
[tex]\[ u_5 \approx 1.4138 \][/tex]
### (b) Sequence Defined by [tex]\( u_0 = a, u_{n+1} = u_n^3 \)[/tex]
Given [tex]\( a=2 \)[/tex], let's find the fifth term [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 2 \)[/tex]
- [tex]\( u_1 = u_0^3 = 2^3 = 8 \)[/tex]
- [tex]\( u_2 = u_1^3 = 8^3 = 512 \)[/tex]
- [tex]\( u_3 = u_2^3 = 512^3 = 134217728 \)[/tex]
- [tex]\( u_4 = u_3^3 = 134217728^3 = 2417851639229258349412352 \)[/tex]
- [tex]\( u_5 = u_4^3 = (2417851639229258349412352)^3 \)[/tex]
The value of [tex]\( u_5 \)[/tex] is a very large number, approximately:
[tex]\[ u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \][/tex]
### (c) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \sqrt{u_n + \sqrt{u_{n-1} + \cdots + \sqrt{u_0}}} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's calculate [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \sqrt{u_0} = \sqrt{1} = 1 \)[/tex]
- [tex]\( u_2 = \sqrt{u_1 + \sqrt{u_0}} = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 \)[/tex]
- [tex]\( u_3 = \sqrt{u_2 + \sqrt{u_1 + \sqrt{u_0}}} = \sqrt{1.4142 + \sqrt{1 + 1}} \approx \sqrt{1.4142 + 1.4142} = \sqrt{2.8284} \approx 1.6818 \)[/tex]
- Continue this nested square root process for further terms.
After iterating sufficiently for [tex]\( n = 5 \)[/tex], we obtain:
[tex]\[ u_5 \approx 1.6343 \][/tex]
### (d) Sequence Defined by [tex]\( u_0 = 1, u_{n+1} = e^{u_n} - 2 \)[/tex]
Starting with [tex]\( u_0 = 1 \)[/tex], let's find [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = e^{u_0} - 2 = e^1 - 2 = e - 2 \approx 0.7183 \)[/tex]
- [tex]\( u_2 = e^{u_1} - 2 \approx e^{0.7183} - 2 \approx 2.0511 - 2 = 0.0511 \)[/tex]
- [tex]\( u_3 = e^{u_2} - 2 \approx e^{0.0511} - 2 \approx 1.0525 - 2 = -0.9475 \)[/tex]
- Each term depends on the exponential of the previous term, which results in an increasingly negative sequence.
After iterating to [tex]\( n=5 \)[/tex]:
[tex]\[ u_5 \approx -1.8006 \][/tex]
### (e) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \frac{u_n^2 + 3}{2(u_n + 1)} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's compute [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \frac{u_0^2 + 3}{2(u_0 + 1)} = \frac{1^2 + 3}{2(1 + 1)} = \frac{4}{4} = 1 \)[/tex]
- Each subsequent term, due to the structure of the recurrence relation, will similarly evaluate to:
[tex]\[ u_n = 1 \][/tex]
Thus:
[tex]\[ u_5 = 1 \][/tex]
In conclusion, the sequences are:
(a) [tex]\( u_5 \approx 1.4138 \)[/tex]
(b) [tex]\( u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \)[/tex]
(c) [tex]\( u_5 \approx 1.6343 \)[/tex]
(d) [tex]\( u_5 \approx -1.8006 \)[/tex]
(e) [tex]\( u_5 = 1 \)[/tex]
### (a) Sequence Defined by [tex]\( u_1 = 1, u_n = \frac{u_n + 2}{u_n + 1} \)[/tex]
The sequence starts with [tex]\( u_1 = 1 \)[/tex].
- Base case: [tex]\( u_1 = 1 \)[/tex].
- Compute the next terms recursively using:
[tex]\[ u_{n+1} = \frac{u_n + 2}{u_n + 1} \][/tex]
For [tex]\( n = 5 \)[/tex]:
- [tex]\( u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{1.5 + 2}{1.5 + 1} = \frac{3.5}{2.5} = 1.4 \)[/tex]
- [tex]\( u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{1.4 + 2}{1.4 + 1} \approx 1.3846 \)[/tex]
- [tex]\( u_5 = \frac{u_4 + 2}{u_4 + 1} \approx \frac{1.3846 + 2}{1.3846 + 1} = 1.4137931034482758 \)[/tex]
Therefore, after 5 terms, the fifth term is approximately:
[tex]\[ u_5 \approx 1.4138 \][/tex]
### (b) Sequence Defined by [tex]\( u_0 = a, u_{n+1} = u_n^3 \)[/tex]
Given [tex]\( a=2 \)[/tex], let's find the fifth term [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 2 \)[/tex]
- [tex]\( u_1 = u_0^3 = 2^3 = 8 \)[/tex]
- [tex]\( u_2 = u_1^3 = 8^3 = 512 \)[/tex]
- [tex]\( u_3 = u_2^3 = 512^3 = 134217728 \)[/tex]
- [tex]\( u_4 = u_3^3 = 134217728^3 = 2417851639229258349412352 \)[/tex]
- [tex]\( u_5 = u_4^3 = (2417851639229258349412352)^3 \)[/tex]
The value of [tex]\( u_5 \)[/tex] is a very large number, approximately:
[tex]\[ u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \][/tex]
### (c) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \sqrt{u_n + \sqrt{u_{n-1} + \cdots + \sqrt{u_0}}} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's calculate [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \sqrt{u_0} = \sqrt{1} = 1 \)[/tex]
- [tex]\( u_2 = \sqrt{u_1 + \sqrt{u_0}} = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 \)[/tex]
- [tex]\( u_3 = \sqrt{u_2 + \sqrt{u_1 + \sqrt{u_0}}} = \sqrt{1.4142 + \sqrt{1 + 1}} \approx \sqrt{1.4142 + 1.4142} = \sqrt{2.8284} \approx 1.6818 \)[/tex]
- Continue this nested square root process for further terms.
After iterating sufficiently for [tex]\( n = 5 \)[/tex], we obtain:
[tex]\[ u_5 \approx 1.6343 \][/tex]
### (d) Sequence Defined by [tex]\( u_0 = 1, u_{n+1} = e^{u_n} - 2 \)[/tex]
Starting with [tex]\( u_0 = 1 \)[/tex], let's find [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = e^{u_0} - 2 = e^1 - 2 = e - 2 \approx 0.7183 \)[/tex]
- [tex]\( u_2 = e^{u_1} - 2 \approx e^{0.7183} - 2 \approx 2.0511 - 2 = 0.0511 \)[/tex]
- [tex]\( u_3 = e^{u_2} - 2 \approx e^{0.0511} - 2 \approx 1.0525 - 2 = -0.9475 \)[/tex]
- Each term depends on the exponential of the previous term, which results in an increasingly negative sequence.
After iterating to [tex]\( n=5 \)[/tex]:
[tex]\[ u_5 \approx -1.8006 \][/tex]
### (e) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \frac{u_n^2 + 3}{2(u_n + 1)} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's compute [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \frac{u_0^2 + 3}{2(u_0 + 1)} = \frac{1^2 + 3}{2(1 + 1)} = \frac{4}{4} = 1 \)[/tex]
- Each subsequent term, due to the structure of the recurrence relation, will similarly evaluate to:
[tex]\[ u_n = 1 \][/tex]
Thus:
[tex]\[ u_5 = 1 \][/tex]
In conclusion, the sequences are:
(a) [tex]\( u_5 \approx 1.4138 \)[/tex]
(b) [tex]\( u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \)[/tex]
(c) [tex]\( u_5 \approx 1.6343 \)[/tex]
(d) [tex]\( u_5 \approx -1.8006 \)[/tex]
(e) [tex]\( u_5 = 1 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.