Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To evaluate the limit
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10}, $[/tex]
we can start by checking if this limit is in an indeterminate form of the type [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex].
First, substitute [tex]\(x = 1\)[/tex] into the numerator and the denominator:
- The numerator [tex]\(\ln(1) = 0\)[/tex].
- The denominator [tex]\(11 \cdot 1 - 1^2 - 10 = 11 - 1 - 10 = 0\)[/tex].
Since both the numerator and the denominator are zero, we have an indeterminate form [tex]\(\frac{0}{0}\)[/tex].
In this case, l'Hôpital's Rule is applicable, which states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{d}{dx}[\ln(x)]}{\frac{d}{dx}[11x - x^2 - 10]}. $[/tex]
Now, calculate the derivatives of the numerator and the denominator:
- The derivative of the numerator [tex]\(\ln(x)\)[/tex] is [tex]\(\frac{1}{x}\)[/tex].
- The derivative of the denominator [tex]\(11x - x^2 - 10\)[/tex] is [tex]\(11 - 2x\)[/tex].
Thus, applying l'Hôpital's Rule, we get:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x}. $[/tex]
Now, simplify the expression inside the limit:
[tex]$ \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x} = \lim_{x \rightarrow 1} \frac{1}{x(11 - 2x)}. $[/tex]
Substitute [tex]\(x = 1\)[/tex] into this simplified expression:
[tex]$ \frac{1}{1 \cdot (11 - 2 \cdot 1)} = \frac{1}{11 - 2} = \frac{1}{9}. $[/tex]
Therefore, the limit is:
[tex]$ \boxed{\frac{1}{9}}. $[/tex]
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10}, $[/tex]
we can start by checking if this limit is in an indeterminate form of the type [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex].
First, substitute [tex]\(x = 1\)[/tex] into the numerator and the denominator:
- The numerator [tex]\(\ln(1) = 0\)[/tex].
- The denominator [tex]\(11 \cdot 1 - 1^2 - 10 = 11 - 1 - 10 = 0\)[/tex].
Since both the numerator and the denominator are zero, we have an indeterminate form [tex]\(\frac{0}{0}\)[/tex].
In this case, l'Hôpital's Rule is applicable, which states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{d}{dx}[\ln(x)]}{\frac{d}{dx}[11x - x^2 - 10]}. $[/tex]
Now, calculate the derivatives of the numerator and the denominator:
- The derivative of the numerator [tex]\(\ln(x)\)[/tex] is [tex]\(\frac{1}{x}\)[/tex].
- The derivative of the denominator [tex]\(11x - x^2 - 10\)[/tex] is [tex]\(11 - 2x\)[/tex].
Thus, applying l'Hôpital's Rule, we get:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x}. $[/tex]
Now, simplify the expression inside the limit:
[tex]$ \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x} = \lim_{x \rightarrow 1} \frac{1}{x(11 - 2x)}. $[/tex]
Substitute [tex]\(x = 1\)[/tex] into this simplified expression:
[tex]$ \frac{1}{1 \cdot (11 - 2 \cdot 1)} = \frac{1}{11 - 2} = \frac{1}{9}. $[/tex]
Therefore, the limit is:
[tex]$ \boxed{\frac{1}{9}}. $[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.