At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To evaluate the limit
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10}, $[/tex]
we can start by checking if this limit is in an indeterminate form of the type [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex].
First, substitute [tex]\(x = 1\)[/tex] into the numerator and the denominator:
- The numerator [tex]\(\ln(1) = 0\)[/tex].
- The denominator [tex]\(11 \cdot 1 - 1^2 - 10 = 11 - 1 - 10 = 0\)[/tex].
Since both the numerator and the denominator are zero, we have an indeterminate form [tex]\(\frac{0}{0}\)[/tex].
In this case, l'Hôpital's Rule is applicable, which states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{d}{dx}[\ln(x)]}{\frac{d}{dx}[11x - x^2 - 10]}. $[/tex]
Now, calculate the derivatives of the numerator and the denominator:
- The derivative of the numerator [tex]\(\ln(x)\)[/tex] is [tex]\(\frac{1}{x}\)[/tex].
- The derivative of the denominator [tex]\(11x - x^2 - 10\)[/tex] is [tex]\(11 - 2x\)[/tex].
Thus, applying l'Hôpital's Rule, we get:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x}. $[/tex]
Now, simplify the expression inside the limit:
[tex]$ \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x} = \lim_{x \rightarrow 1} \frac{1}{x(11 - 2x)}. $[/tex]
Substitute [tex]\(x = 1\)[/tex] into this simplified expression:
[tex]$ \frac{1}{1 \cdot (11 - 2 \cdot 1)} = \frac{1}{11 - 2} = \frac{1}{9}. $[/tex]
Therefore, the limit is:
[tex]$ \boxed{\frac{1}{9}}. $[/tex]
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10}, $[/tex]
we can start by checking if this limit is in an indeterminate form of the type [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex].
First, substitute [tex]\(x = 1\)[/tex] into the numerator and the denominator:
- The numerator [tex]\(\ln(1) = 0\)[/tex].
- The denominator [tex]\(11 \cdot 1 - 1^2 - 10 = 11 - 1 - 10 = 0\)[/tex].
Since both the numerator and the denominator are zero, we have an indeterminate form [tex]\(\frac{0}{0}\)[/tex].
In this case, l'Hôpital's Rule is applicable, which states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], we can take the derivatives of the numerator and the denominator:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{d}{dx}[\ln(x)]}{\frac{d}{dx}[11x - x^2 - 10]}. $[/tex]
Now, calculate the derivatives of the numerator and the denominator:
- The derivative of the numerator [tex]\(\ln(x)\)[/tex] is [tex]\(\frac{1}{x}\)[/tex].
- The derivative of the denominator [tex]\(11x - x^2 - 10\)[/tex] is [tex]\(11 - 2x\)[/tex].
Thus, applying l'Hôpital's Rule, we get:
[tex]$ \lim_{x \rightarrow 1} \frac{\ln(x)}{11x - x^2 - 10} = \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x}. $[/tex]
Now, simplify the expression inside the limit:
[tex]$ \lim_{x \rightarrow 1} \frac{\frac{1}{x}}{11 - 2x} = \lim_{x \rightarrow 1} \frac{1}{x(11 - 2x)}. $[/tex]
Substitute [tex]\(x = 1\)[/tex] into this simplified expression:
[tex]$ \frac{1}{1 \cdot (11 - 2 \cdot 1)} = \frac{1}{11 - 2} = \frac{1}{9}. $[/tex]
Therefore, the limit is:
[tex]$ \boxed{\frac{1}{9}}. $[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.