Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve for the area of a square given its diagonal, let's follow these steps:
1. Understand the relation between the side and the diagonal:
- In a square, if the length of the diagonal is [tex]\( x \)[/tex] units, we know that each side of the square is [tex]\( s \)[/tex] units.
- The relationship between the side length [tex]\( s \)[/tex] and the diagonal [tex]\( x \)[/tex] in a square is derived from the Pythagorean theorem. For a square with side length [tex]\( s \)[/tex], the diagonal forms a right triangle with the two sides of the square.
- Therefore, [tex]\( x^2 = s^2 + s^2 \)[/tex].
2. Apply the Pythagorean theorem:
- This simplifies to [tex]\( x^2 = 2s^2 \)[/tex].
- Solving for [tex]\( s^2 \)[/tex], we get: [tex]\( s^2 = \frac{x^2}{2} \)[/tex].
3. Calculate the area of the square:
- The area of a square is given by the side length squared. So, [tex]\( \text{Area} = s^2 \)[/tex].
- Substituting [tex]\( s^2 \)[/tex] from the above equation, we have [tex]\( \text{Area} = \frac{x^2}{2} \)[/tex].
Therefore, the area of the square in terms of the diagonal [tex]\( x \)[/tex] is [tex]\(\frac{1}{2} x^2 \)[/tex] square units.
Hence, the correct answer is [tex]\(\frac{1}{2} x^2\)[/tex] square units.
1. Understand the relation between the side and the diagonal:
- In a square, if the length of the diagonal is [tex]\( x \)[/tex] units, we know that each side of the square is [tex]\( s \)[/tex] units.
- The relationship between the side length [tex]\( s \)[/tex] and the diagonal [tex]\( x \)[/tex] in a square is derived from the Pythagorean theorem. For a square with side length [tex]\( s \)[/tex], the diagonal forms a right triangle with the two sides of the square.
- Therefore, [tex]\( x^2 = s^2 + s^2 \)[/tex].
2. Apply the Pythagorean theorem:
- This simplifies to [tex]\( x^2 = 2s^2 \)[/tex].
- Solving for [tex]\( s^2 \)[/tex], we get: [tex]\( s^2 = \frac{x^2}{2} \)[/tex].
3. Calculate the area of the square:
- The area of a square is given by the side length squared. So, [tex]\( \text{Area} = s^2 \)[/tex].
- Substituting [tex]\( s^2 \)[/tex] from the above equation, we have [tex]\( \text{Area} = \frac{x^2}{2} \)[/tex].
Therefore, the area of the square in terms of the diagonal [tex]\( x \)[/tex] is [tex]\(\frac{1}{2} x^2 \)[/tex] square units.
Hence, the correct answer is [tex]\(\frac{1}{2} x^2\)[/tex] square units.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.