Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the value of [tex]\( x \)[/tex] where the mean of the expressions [tex]\( x+1 \)[/tex], [tex]\( x+3 \)[/tex], and [tex]\( x+5 \)[/tex] is 4, follow these steps:
1. Understand the Mean Formula:
The mean (average) of a set of numbers is given by the sum of the numbers divided by the count of numbers. For the expressions [tex]\( x+1 \)[/tex], [tex]\( x+3 \)[/tex], and [tex]\( x+5 \)[/tex], the mean is given by:
[tex]\[ \text{Mean} = \frac{(x+1) + (x+3) + (x+5)}{3} \][/tex]
2. Set Up the Equation:
According to the problem, the mean of [tex]\( x+1 \)[/tex], [tex]\( x+3 \)[/tex], and [tex]\( x+5 \)[/tex] is 4. Therefore, we set up the equation:
[tex]\[ \frac{(x+1) + (x+3) + (x+5)}{3} = 4 \][/tex]
3. Simplify the Numerator:
Combine like terms in the numerator:
[tex]\[ (x+1) + (x+3) + (x+5) = x + 1 + x + 3 + x + 5 = 3x + 9 \][/tex]
So the equation now becomes:
[tex]\[ \frac{3x + 9}{3} = 4 \][/tex]
4. Eliminate the Denominator:
Multiply both sides of the equation by 3 to clear the fraction:
[tex]\[ 3x + 9 = 4 \times 3 \][/tex]
Simplify the right-hand side:
[tex]\[ 3x + 9 = 12 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
- Subtract 9 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 3x = 12 - 9 \][/tex]
[tex]\[ 3x = 3 \][/tex]
- Divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{3}{3} \][/tex]
[tex]\[ x = 1 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( \boxed{1} \)[/tex].
1. Understand the Mean Formula:
The mean (average) of a set of numbers is given by the sum of the numbers divided by the count of numbers. For the expressions [tex]\( x+1 \)[/tex], [tex]\( x+3 \)[/tex], and [tex]\( x+5 \)[/tex], the mean is given by:
[tex]\[ \text{Mean} = \frac{(x+1) + (x+3) + (x+5)}{3} \][/tex]
2. Set Up the Equation:
According to the problem, the mean of [tex]\( x+1 \)[/tex], [tex]\( x+3 \)[/tex], and [tex]\( x+5 \)[/tex] is 4. Therefore, we set up the equation:
[tex]\[ \frac{(x+1) + (x+3) + (x+5)}{3} = 4 \][/tex]
3. Simplify the Numerator:
Combine like terms in the numerator:
[tex]\[ (x+1) + (x+3) + (x+5) = x + 1 + x + 3 + x + 5 = 3x + 9 \][/tex]
So the equation now becomes:
[tex]\[ \frac{3x + 9}{3} = 4 \][/tex]
4. Eliminate the Denominator:
Multiply both sides of the equation by 3 to clear the fraction:
[tex]\[ 3x + 9 = 4 \times 3 \][/tex]
Simplify the right-hand side:
[tex]\[ 3x + 9 = 12 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
- Subtract 9 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 3x = 12 - 9 \][/tex]
[tex]\[ 3x = 3 \][/tex]
- Divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{3}{3} \][/tex]
[tex]\[ x = 1 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( \boxed{1} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.