Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To evaluate the limit using l'Hôpital's Rule, follow these steps:
Consider the limit:
[tex]\[ \lim _{x \rightarrow 0} \frac{6 \sin 7 x}{5 x} \][/tex]
First, check if using l'Hôpital's Rule is appropriate. L'Hôpital's Rule can be applied to the limit if it is in the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex].
### Step 1: Identify the Indeterminate Form
Evaluate the limit's numerator and denominator at [tex]\(x = 0\)[/tex]:
- [tex]\(\sin(7 \cdot 0) = \sin(0) = 0\)[/tex]
- The numerator [tex]\(6 \cdot 0 = 0\)[/tex]
- The denominator [tex]\(5 \cdot 0 = 0\)[/tex]
Since both the numerator and denominator approach 0 as [tex]\(x \to 0\)[/tex], the limit is initially in the indeterminate form [tex]\(\frac{0}{0}\)[/tex].
### Step 2: Apply l'Hôpital's Rule
L'Hôpital's Rule states that:
[tex]\[ \lim _{x \rightarrow c} \frac{f(x)}{g(x)} = \lim _{x \rightarrow c} \frac{f'(x)}{g'(x)} \][/tex]
provided that the limit on the right-hand side exists.
Rewrite the given limit using the derivatives of the numerator and the denominator:
- Let [tex]\( f(x) = 6 \sin(7x) \)[/tex]
- Let [tex]\( g(x) = 5x \)[/tex]
Compute the derivatives:
- [tex]\( f'(x) = 6 \cdot 7 \cos(7x) = 42 \cos(7x) \)[/tex]
- [tex]\( g'(x) = 5 \)[/tex]
Thus, the limit becomes:
[tex]\[ \lim _{x \rightarrow 0} \frac{6 \sin 7 x}{5 x} = \lim _{x \rightarrow 0} \frac{42 \cos(7x)}{5} \][/tex]
### Step 3: Evaluate the New Limit
Now, evaluate the limit of the new expression as [tex]\(x \to 0\)[/tex]:
- As [tex]\( x \to 0 \)[/tex], [tex]\(\cos(7x) \to \cos(0) = 1\)[/tex]
Therefore:
[tex]\[ \lim _{x \rightarrow 0} \frac{42 \cos(7x)}{5} = \frac{42 \cdot 1}{5} = \frac{42}{5} = 8.4 \][/tex]
So, the evaluated limit is:
[tex]\[ \lim _{x \rightarrow 0} \frac{6 \sin 7 x}{5 x} = 8.4 \][/tex]
Consider the limit:
[tex]\[ \lim _{x \rightarrow 0} \frac{6 \sin 7 x}{5 x} \][/tex]
First, check if using l'Hôpital's Rule is appropriate. L'Hôpital's Rule can be applied to the limit if it is in the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex].
### Step 1: Identify the Indeterminate Form
Evaluate the limit's numerator and denominator at [tex]\(x = 0\)[/tex]:
- [tex]\(\sin(7 \cdot 0) = \sin(0) = 0\)[/tex]
- The numerator [tex]\(6 \cdot 0 = 0\)[/tex]
- The denominator [tex]\(5 \cdot 0 = 0\)[/tex]
Since both the numerator and denominator approach 0 as [tex]\(x \to 0\)[/tex], the limit is initially in the indeterminate form [tex]\(\frac{0}{0}\)[/tex].
### Step 2: Apply l'Hôpital's Rule
L'Hôpital's Rule states that:
[tex]\[ \lim _{x \rightarrow c} \frac{f(x)}{g(x)} = \lim _{x \rightarrow c} \frac{f'(x)}{g'(x)} \][/tex]
provided that the limit on the right-hand side exists.
Rewrite the given limit using the derivatives of the numerator and the denominator:
- Let [tex]\( f(x) = 6 \sin(7x) \)[/tex]
- Let [tex]\( g(x) = 5x \)[/tex]
Compute the derivatives:
- [tex]\( f'(x) = 6 \cdot 7 \cos(7x) = 42 \cos(7x) \)[/tex]
- [tex]\( g'(x) = 5 \)[/tex]
Thus, the limit becomes:
[tex]\[ \lim _{x \rightarrow 0} \frac{6 \sin 7 x}{5 x} = \lim _{x \rightarrow 0} \frac{42 \cos(7x)}{5} \][/tex]
### Step 3: Evaluate the New Limit
Now, evaluate the limit of the new expression as [tex]\(x \to 0\)[/tex]:
- As [tex]\( x \to 0 \)[/tex], [tex]\(\cos(7x) \to \cos(0) = 1\)[/tex]
Therefore:
[tex]\[ \lim _{x \rightarrow 0} \frac{42 \cos(7x)}{5} = \frac{42 \cdot 1}{5} = \frac{42}{5} = 8.4 \][/tex]
So, the evaluated limit is:
[tex]\[ \lim _{x \rightarrow 0} \frac{6 \sin 7 x}{5 x} = 8.4 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.