At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's determine the number of electrons for the given designations one by one:
1. [tex]\( 5 d_{z^2} \)[/tex] :
This refers to a specific orbital in the [tex]\( d \)[/tex] subshell of the 5th energy level. Each orbital can hold 2 electrons. Therefore, [tex]\( 5 d_{z^2} \)[/tex] can have:
[tex]\[ 5 d_{z^2} : 2 \text{ electron(s)} \][/tex]
2. [tex]\( 1 d \)[/tex] :
The [tex]\( d \)[/tex] subshell does not exist in the 1st principal energy level ([tex]\( n=1 \)[/tex]). Therefore, [tex]\( 1 d \)[/tex] can have:
[tex]\[ 1 d : 0 \text{ electron(s)} \][/tex]
3. [tex]\( 5 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 5th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 5 d \)[/tex] can have:
[tex]\[ 5 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
4. [tex]\( 7 p \)[/tex] :
The [tex]\( p \)[/tex] subshell does not exist in the 7th principal energy level ([tex]\( n=7 \)[/tex]). Therefore, [tex]\( 7 p \)[/tex] can have:
[tex]\[ 7 p : 0 \text{ electron(s)} \][/tex]
5. [tex]\( 6 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 6th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 6 d \)[/tex] can have:
[tex]\[ 6 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
6. [tex]\( n=3 \)[/tex] :
The total number of electrons in the 3rd energy level ([tex]\( n=3 \)[/tex]) can be calculated by summing the electrons in the 3s, 3p, and 3d subshells:
[tex]\[ \begin{align*} 3s & : 1 \text{ orbital} \times 2 \text{ electrons/orbital} = 2 \text{ electrons} \\ 3p & : 3 \text{ orbitals} \times 2 \text{ electrons/orbital} = 6 \text{ electrons} \\ 3d & : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electrons} \\ \end{align*} \][/tex]
Therefore, the total number of electrons for [tex]\( n=3 \)[/tex] is:
[tex]\[ n=3 : 2 + 6 + 10 = 18 \text{ electron(s)} \][/tex]
In summary:
[tex]\[ \begin{align*} 5 d_{z^2} & : 2 \text{ electron(s)} \\ 1 d & : 0 \text{ electron(s)} \\ 5 d & : 10 \text{ electron(s)} \\ 7 p & : 0 \text{ electron(s)} \\ 6 d & : 10 \text{ electron(s)} \\ n=3 & : 18 \text{ electron(s)} \end{align*} \][/tex]
1. [tex]\( 5 d_{z^2} \)[/tex] :
This refers to a specific orbital in the [tex]\( d \)[/tex] subshell of the 5th energy level. Each orbital can hold 2 electrons. Therefore, [tex]\( 5 d_{z^2} \)[/tex] can have:
[tex]\[ 5 d_{z^2} : 2 \text{ electron(s)} \][/tex]
2. [tex]\( 1 d \)[/tex] :
The [tex]\( d \)[/tex] subshell does not exist in the 1st principal energy level ([tex]\( n=1 \)[/tex]). Therefore, [tex]\( 1 d \)[/tex] can have:
[tex]\[ 1 d : 0 \text{ electron(s)} \][/tex]
3. [tex]\( 5 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 5th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 5 d \)[/tex] can have:
[tex]\[ 5 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
4. [tex]\( 7 p \)[/tex] :
The [tex]\( p \)[/tex] subshell does not exist in the 7th principal energy level ([tex]\( n=7 \)[/tex]). Therefore, [tex]\( 7 p \)[/tex] can have:
[tex]\[ 7 p : 0 \text{ electron(s)} \][/tex]
5. [tex]\( 6 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 6th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 6 d \)[/tex] can have:
[tex]\[ 6 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
6. [tex]\( n=3 \)[/tex] :
The total number of electrons in the 3rd energy level ([tex]\( n=3 \)[/tex]) can be calculated by summing the electrons in the 3s, 3p, and 3d subshells:
[tex]\[ \begin{align*} 3s & : 1 \text{ orbital} \times 2 \text{ electrons/orbital} = 2 \text{ electrons} \\ 3p & : 3 \text{ orbitals} \times 2 \text{ electrons/orbital} = 6 \text{ electrons} \\ 3d & : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electrons} \\ \end{align*} \][/tex]
Therefore, the total number of electrons for [tex]\( n=3 \)[/tex] is:
[tex]\[ n=3 : 2 + 6 + 10 = 18 \text{ electron(s)} \][/tex]
In summary:
[tex]\[ \begin{align*} 5 d_{z^2} & : 2 \text{ electron(s)} \\ 1 d & : 0 \text{ electron(s)} \\ 5 d & : 10 \text{ electron(s)} \\ 7 p & : 0 \text{ electron(s)} \\ 6 d & : 10 \text{ electron(s)} \\ n=3 & : 18 \text{ electron(s)} \end{align*} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.