Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's determine the number of electrons for the given designations one by one:
1. [tex]\( 5 d_{z^2} \)[/tex] :
This refers to a specific orbital in the [tex]\( d \)[/tex] subshell of the 5th energy level. Each orbital can hold 2 electrons. Therefore, [tex]\( 5 d_{z^2} \)[/tex] can have:
[tex]\[ 5 d_{z^2} : 2 \text{ electron(s)} \][/tex]
2. [tex]\( 1 d \)[/tex] :
The [tex]\( d \)[/tex] subshell does not exist in the 1st principal energy level ([tex]\( n=1 \)[/tex]). Therefore, [tex]\( 1 d \)[/tex] can have:
[tex]\[ 1 d : 0 \text{ electron(s)} \][/tex]
3. [tex]\( 5 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 5th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 5 d \)[/tex] can have:
[tex]\[ 5 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
4. [tex]\( 7 p \)[/tex] :
The [tex]\( p \)[/tex] subshell does not exist in the 7th principal energy level ([tex]\( n=7 \)[/tex]). Therefore, [tex]\( 7 p \)[/tex] can have:
[tex]\[ 7 p : 0 \text{ electron(s)} \][/tex]
5. [tex]\( 6 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 6th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 6 d \)[/tex] can have:
[tex]\[ 6 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
6. [tex]\( n=3 \)[/tex] :
The total number of electrons in the 3rd energy level ([tex]\( n=3 \)[/tex]) can be calculated by summing the electrons in the 3s, 3p, and 3d subshells:
[tex]\[ \begin{align*} 3s & : 1 \text{ orbital} \times 2 \text{ electrons/orbital} = 2 \text{ electrons} \\ 3p & : 3 \text{ orbitals} \times 2 \text{ electrons/orbital} = 6 \text{ electrons} \\ 3d & : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electrons} \\ \end{align*} \][/tex]
Therefore, the total number of electrons for [tex]\( n=3 \)[/tex] is:
[tex]\[ n=3 : 2 + 6 + 10 = 18 \text{ electron(s)} \][/tex]
In summary:
[tex]\[ \begin{align*} 5 d_{z^2} & : 2 \text{ electron(s)} \\ 1 d & : 0 \text{ electron(s)} \\ 5 d & : 10 \text{ electron(s)} \\ 7 p & : 0 \text{ electron(s)} \\ 6 d & : 10 \text{ electron(s)} \\ n=3 & : 18 \text{ electron(s)} \end{align*} \][/tex]
1. [tex]\( 5 d_{z^2} \)[/tex] :
This refers to a specific orbital in the [tex]\( d \)[/tex] subshell of the 5th energy level. Each orbital can hold 2 electrons. Therefore, [tex]\( 5 d_{z^2} \)[/tex] can have:
[tex]\[ 5 d_{z^2} : 2 \text{ electron(s)} \][/tex]
2. [tex]\( 1 d \)[/tex] :
The [tex]\( d \)[/tex] subshell does not exist in the 1st principal energy level ([tex]\( n=1 \)[/tex]). Therefore, [tex]\( 1 d \)[/tex] can have:
[tex]\[ 1 d : 0 \text{ electron(s)} \][/tex]
3. [tex]\( 5 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 5th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 5 d \)[/tex] can have:
[tex]\[ 5 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
4. [tex]\( 7 p \)[/tex] :
The [tex]\( p \)[/tex] subshell does not exist in the 7th principal energy level ([tex]\( n=7 \)[/tex]). Therefore, [tex]\( 7 p \)[/tex] can have:
[tex]\[ 7 p : 0 \text{ electron(s)} \][/tex]
5. [tex]\( 6 d \)[/tex] :
The [tex]\( d \)[/tex] subshell in the 6th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 6 d \)[/tex] can have:
[tex]\[ 6 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]
6. [tex]\( n=3 \)[/tex] :
The total number of electrons in the 3rd energy level ([tex]\( n=3 \)[/tex]) can be calculated by summing the electrons in the 3s, 3p, and 3d subshells:
[tex]\[ \begin{align*} 3s & : 1 \text{ orbital} \times 2 \text{ electrons/orbital} = 2 \text{ electrons} \\ 3p & : 3 \text{ orbitals} \times 2 \text{ electrons/orbital} = 6 \text{ electrons} \\ 3d & : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electrons} \\ \end{align*} \][/tex]
Therefore, the total number of electrons for [tex]\( n=3 \)[/tex] is:
[tex]\[ n=3 : 2 + 6 + 10 = 18 \text{ electron(s)} \][/tex]
In summary:
[tex]\[ \begin{align*} 5 d_{z^2} & : 2 \text{ electron(s)} \\ 1 d & : 0 \text{ electron(s)} \\ 5 d & : 10 \text{ electron(s)} \\ 7 p & : 0 \text{ electron(s)} \\ 6 d & : 10 \text{ electron(s)} \\ n=3 & : 18 \text{ electron(s)} \end{align*} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.