Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's determine the limit of the sequence [tex]\( a_n = 6 - \frac{3}{n^2} \)[/tex] as [tex]\( n \)[/tex] approaches infinity.
1. We start by examining the given sequence:
[tex]\[ a_n = 6 - \frac{3}{n^2} \][/tex]
2. To find the limit as [tex]\( n \)[/tex] approaches infinity, we analyze each term separately:
- The term [tex]\( 6 \)[/tex] remains constant as [tex]\( n \)[/tex] approaches infinity.
- The term [tex]\( \frac{3}{n^2} \)[/tex] changes as [tex]\( n \)[/tex] grows larger. Since [tex]\( n^2 \)[/tex] becomes very large as [tex]\( n \)[/tex] approaches infinity, [tex]\( \frac{3}{n^2} \)[/tex] becomes very small.
3. Formally, as [tex]\( n \)[/tex] approaches infinity, [tex]\( n^2 \rightarrow \infty \)[/tex].
4. Hence, [tex]\( \frac{3}{n^2} \rightarrow 0 \)[/tex].
5. Therefore, the sequence [tex]\( 6 - \frac{3}{n^2} \)[/tex] approaches:
[tex]\[ 6 - 0 = 6. \][/tex]
6. Thus, we conclude that the limit of the sequence [tex]\( a_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} a_n = 6 \][/tex]
So, the limit of [tex]\( a_n \)[/tex] is [tex]\(\boxed{6}\)[/tex]. The initial value given in the problem ([tex]\( \lim_{n \rightarrow \infty} a_n = 1 \)[/tex]) appears to be incorrect based on the analysis.
1. We start by examining the given sequence:
[tex]\[ a_n = 6 - \frac{3}{n^2} \][/tex]
2. To find the limit as [tex]\( n \)[/tex] approaches infinity, we analyze each term separately:
- The term [tex]\( 6 \)[/tex] remains constant as [tex]\( n \)[/tex] approaches infinity.
- The term [tex]\( \frac{3}{n^2} \)[/tex] changes as [tex]\( n \)[/tex] grows larger. Since [tex]\( n^2 \)[/tex] becomes very large as [tex]\( n \)[/tex] approaches infinity, [tex]\( \frac{3}{n^2} \)[/tex] becomes very small.
3. Formally, as [tex]\( n \)[/tex] approaches infinity, [tex]\( n^2 \rightarrow \infty \)[/tex].
4. Hence, [tex]\( \frac{3}{n^2} \rightarrow 0 \)[/tex].
5. Therefore, the sequence [tex]\( 6 - \frac{3}{n^2} \)[/tex] approaches:
[tex]\[ 6 - 0 = 6. \][/tex]
6. Thus, we conclude that the limit of the sequence [tex]\( a_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} a_n = 6 \][/tex]
So, the limit of [tex]\( a_n \)[/tex] is [tex]\(\boxed{6}\)[/tex]. The initial value given in the problem ([tex]\( \lim_{n \rightarrow \infty} a_n = 1 \)[/tex]) appears to be incorrect based on the analysis.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.