Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the system of equations graphically and algebraically, we can follow these steps:
1. Graph the first equation:
[tex]\[ y = 3x + 9 \][/tex]
The equation [tex]\( y = 3x + 9 \)[/tex] is a linear equation in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m = 3 \)[/tex] is the slope and [tex]\( b = 9 \)[/tex] is the y-intercept.
- To plot this line, start by locating the y-intercept (0, 9) on the graph.
- From the y-intercept, use the slope. Since the slope is 3, which means "rise over run" is 3/1, move up 3 units and 1 unit to the right to find another point on the line. Repeat this process to draw the line.
2. Graph the second equation:
[tex]\[ 6x + 2y = 6 \][/tex]
To write this in slope-intercept form [tex]\( y = mx + b \)[/tex], solve for [tex]\( y \)[/tex]:
[tex]\[ 2y = -6x + 6 \][/tex]
[tex]\[ y = -3x + 3 \][/tex]
This second linear equation, [tex]\( y = -3x + 3 \)[/tex], has a slope [tex]\( m = -3 \)[/tex] and a y-intercept [tex]\( b = 3 \)[/tex].
- To plot this line, start by locating the y-intercept (0, 3) on the graph.
- From the y-intercept, use the slope. Since the slope is -3, move down 3 units and 1 unit to the right, or equivalently, move up 3 units and 1 unit to the left to find another point on the line. Repeat this process to draw the line.
3. Find the intersection point:
The solution to the system of equations is the point where the two lines intersect.
4. Solving algebraically:
Let's solve the system of equations algebraically to confirm the graphical intersection point.
[tex]\[ y = 3x + 9 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 6x + 2y = 6 \quad \text{(Equation 2)} \][/tex]
Substitute [tex]\( y \)[/tex] from Equation 1 into Equation 2:
[tex]\[ 6x + 2(3x + 9) = 6 \][/tex]
Simplify:
[tex]\[ 6x + 6x + 18 = 6 \][/tex]
[tex]\[ 12x + 18 = 6 \][/tex]
Subtract 18 from both sides:
[tex]\[ 12x = -12 \][/tex]
Divide by 12:
[tex]\[ x = -1 \][/tex]
Substitute [tex]\( x = -1 \)[/tex] back into Equation 1 to find [tex]\( y \)[/tex]:
[tex]\[ y = 3(-1) + 9 \][/tex]
[tex]\[ y = -3 + 9 \][/tex]
[tex]\[ y = 6 \][/tex]
Thus, the solution to the system is the point [tex]\( (-1, 6) \)[/tex].
Therefore, the correct answer to the question is:
There is one unique solution [tex]\((-1,6)\)[/tex].
1. Graph the first equation:
[tex]\[ y = 3x + 9 \][/tex]
The equation [tex]\( y = 3x + 9 \)[/tex] is a linear equation in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m = 3 \)[/tex] is the slope and [tex]\( b = 9 \)[/tex] is the y-intercept.
- To plot this line, start by locating the y-intercept (0, 9) on the graph.
- From the y-intercept, use the slope. Since the slope is 3, which means "rise over run" is 3/1, move up 3 units and 1 unit to the right to find another point on the line. Repeat this process to draw the line.
2. Graph the second equation:
[tex]\[ 6x + 2y = 6 \][/tex]
To write this in slope-intercept form [tex]\( y = mx + b \)[/tex], solve for [tex]\( y \)[/tex]:
[tex]\[ 2y = -6x + 6 \][/tex]
[tex]\[ y = -3x + 3 \][/tex]
This second linear equation, [tex]\( y = -3x + 3 \)[/tex], has a slope [tex]\( m = -3 \)[/tex] and a y-intercept [tex]\( b = 3 \)[/tex].
- To plot this line, start by locating the y-intercept (0, 3) on the graph.
- From the y-intercept, use the slope. Since the slope is -3, move down 3 units and 1 unit to the right, or equivalently, move up 3 units and 1 unit to the left to find another point on the line. Repeat this process to draw the line.
3. Find the intersection point:
The solution to the system of equations is the point where the two lines intersect.
4. Solving algebraically:
Let's solve the system of equations algebraically to confirm the graphical intersection point.
[tex]\[ y = 3x + 9 \quad \text{(Equation 1)} \][/tex]
[tex]\[ 6x + 2y = 6 \quad \text{(Equation 2)} \][/tex]
Substitute [tex]\( y \)[/tex] from Equation 1 into Equation 2:
[tex]\[ 6x + 2(3x + 9) = 6 \][/tex]
Simplify:
[tex]\[ 6x + 6x + 18 = 6 \][/tex]
[tex]\[ 12x + 18 = 6 \][/tex]
Subtract 18 from both sides:
[tex]\[ 12x = -12 \][/tex]
Divide by 12:
[tex]\[ x = -1 \][/tex]
Substitute [tex]\( x = -1 \)[/tex] back into Equation 1 to find [tex]\( y \)[/tex]:
[tex]\[ y = 3(-1) + 9 \][/tex]
[tex]\[ y = -3 + 9 \][/tex]
[tex]\[ y = 6 \][/tex]
Thus, the solution to the system is the point [tex]\( (-1, 6) \)[/tex].
Therefore, the correct answer to the question is:
There is one unique solution [tex]\((-1,6)\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.