Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To classify the given triangle with side lengths 10, 12, and 15, we will start by checking the properties of the sides in relation to each other. Specifically, we need to determine if the triangle is acute, right, or obtuse based on the square of the sides.
Given the sides are [tex]\(a = 10\)[/tex], [tex]\(b = 12\)[/tex], and [tex]\(c = 15\)[/tex], where [tex]\(c\)[/tex] is the longest side, we'll use the following criteria:
1. Acute Triangle: All angles are less than 90 degrees, and it satisfies [tex]\(a^2 + b^2 > c^2\)[/tex].
2. Right Triangle: One angle is exactly 90 degrees, and it satisfies [tex]\(a^2 + b^2 = c^2\)[/tex].
3. Obtuse Triangle: One angle is greater than 90 degrees, and it satisfies [tex]\(a^2 + b^2 < c^2\)[/tex].
Let's calculate the squares of the side lengths:
- [tex]\(a^2 = 10^2 = 100\)[/tex]
- [tex]\(b^2 = 12^2 = 144\)[/tex]
- [tex]\(c^2 = 15^2 = 225\)[/tex]
Now we check if the triangle satisfies the acute triangle condition:
[tex]\[a^2 + b^2 = 100 + 144 = 244\][/tex]
Since [tex]\(244 > 225\)[/tex], we have:
[tex]\[a^2 + b^2 > c^2\][/tex]
Therefore, since [tex]\(10^2 + 12^2 > 15^2\)[/tex], the given triangle is an acute triangle. Thus, the classification best representing the triangle is acute.
Given the sides are [tex]\(a = 10\)[/tex], [tex]\(b = 12\)[/tex], and [tex]\(c = 15\)[/tex], where [tex]\(c\)[/tex] is the longest side, we'll use the following criteria:
1. Acute Triangle: All angles are less than 90 degrees, and it satisfies [tex]\(a^2 + b^2 > c^2\)[/tex].
2. Right Triangle: One angle is exactly 90 degrees, and it satisfies [tex]\(a^2 + b^2 = c^2\)[/tex].
3. Obtuse Triangle: One angle is greater than 90 degrees, and it satisfies [tex]\(a^2 + b^2 < c^2\)[/tex].
Let's calculate the squares of the side lengths:
- [tex]\(a^2 = 10^2 = 100\)[/tex]
- [tex]\(b^2 = 12^2 = 144\)[/tex]
- [tex]\(c^2 = 15^2 = 225\)[/tex]
Now we check if the triangle satisfies the acute triangle condition:
[tex]\[a^2 + b^2 = 100 + 144 = 244\][/tex]
Since [tex]\(244 > 225\)[/tex], we have:
[tex]\[a^2 + b^2 > c^2\][/tex]
Therefore, since [tex]\(10^2 + 12^2 > 15^2\)[/tex], the given triangle is an acute triangle. Thus, the classification best representing the triangle is acute.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.