Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Type the correct answer in each box. Use numerals instead of words. If necessary, use "/" for the fraction bar.

If the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex] are [tex]$(14, -1)$[/tex] and [tex]$(2, 1)$[/tex], respectively, the [tex]$y$[/tex]-intercept of [tex]$\overleftrightarrow{A B}$[/tex] is [tex]$\square$[/tex], and the equation of [tex]$\overleftrightarrow{A B}$[/tex] is [tex]$y=$[/tex] [tex]$\square x + \square$[/tex].

If the [tex]$y$[/tex]-coordinate of point [tex]$C$[/tex] is 13, its [tex]$x$[/tex]-coordinate is [tex]$\square$[/tex].


Sagot :

Alright, let's break down the given information to provide the detailed answers for the boxes.

1. Finding the y-intercept of [tex]\(\overleftrightarrow{A B}\)[/tex]:
The coordinates of points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\((14, -1)\)[/tex] and [tex]\((2, 1)\)[/tex], respectively. The y-intercept ([tex]\(b\)[/tex]) of line [tex]\(\overleftrightarrow{A B}\)[/tex] is [tex]\( 1.333 \)[/tex].

2. Finding the equation of [tex]\(\overleftrightarrow{A B}\)[/tex]:
The slope ([tex]\(m\)[/tex]) of the line passing through points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] is [tex]\( -0.167 \)[/tex]. Therefore, the equation of the line [tex]\(\overleftrightarrow{A B}\)[/tex] (which is also the same line as [tex]\(\overleftrightarrow{B C}\)[/tex]) is given by [tex]\( y = mx + b \)[/tex]. Substituting the calculated values, the equation is [tex]\( y = -0.167x + 1.333 \)[/tex].

3. Finding the x-coordinate of point [tex]\(C\)[/tex]:
Given the y-coordinate of point [tex]\(C\)[/tex] is 13, we need to find the corresponding x-coordinate on the line [tex]\(\overleftrightarrow{A B}\)[/tex] (i.e., [tex]\( y = -0.167x + 1.333 \)[/tex]). The calculated x-coordinate is [tex]\( -70 \)[/tex].

Putting these into the correct answers for the boxes:

The [tex]$y$[/tex]-intercept of [tex]\(\overleftrightarrow{A B}\)[/tex] is [tex]\(\boxed{1.333}\)[/tex] and the equation of [tex]\(\overleftrightarrow{A B}\)[/tex] is [tex]\(y = \boxed{-0.167}x + \boxed{1.333}\)[/tex]. If the y-coordinate of point [tex]\(C\)[/tex] is [tex]\(13\)[/tex], its x-coordinate is [tex]\(\boxed{-70}\)[/tex].