Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the oblique asymptote of [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex], we can use synthetic division. Here's a detailed step-by-step solution:
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.