Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of the oblique asymptote of [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex], we can use synthetic division. Here's a detailed step-by-step solution:
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.