At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the equation of the oblique asymptote of [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex], we can use synthetic division. Here's a detailed step-by-step solution:
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.