Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equation of the oblique asymptote of [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex], we can use synthetic division. Here's a detailed step-by-step solution:
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.