Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's factor the polynomial [tex]\( p(x) = x^3 - 2x^2 - 4x^2 + 8x \)[/tex] step by step.
1. Combine like terms:
First, let's simplify the polynomial by combining the like terms:
[tex]\[ p(x) = x^3 - 2x^2 - 4x^2 + 8x \][/tex]
Notice that we have two terms involving [tex]\( x^2 \)[/tex]. Combine them:
[tex]\[ p(x) = x^3 - 6x^2 + 8x \][/tex]
2. Factor out the greatest common factor:
Next, we look for the greatest common factor (GCF) in the polynomial. Each term has a common factor of [tex]\( x \)[/tex]:
[tex]\[ p(x) = x(x^2 - 6x + 8) \][/tex]
3. Factor the quadratic expression:
Now, we need to factor the quadratic expression [tex]\( x^2 - 6x + 8 \)[/tex]. We look for two numbers that multiply to +8 and add to -6. Those numbers are -2 and -4:
[tex]\[ x^2 - 6x + 8 = (x - 4)(x - 2) \][/tex]
4. Combine all the factors:
Now we combine all the factors:
[tex]\[ p(x) = x(x - 4)(x - 2) \][/tex]
So, the factors of the polynomial [tex]\( p(x) = x^3 - 2x^2 - 4x^2 + 8x \)[/tex] are:
[tex]\[ x(x - 4)(x - 2) \][/tex]
Therefore, the factored form of the polynomial is:
[tex]\[ x(x - 4)(x - 2) \][/tex]
1. Combine like terms:
First, let's simplify the polynomial by combining the like terms:
[tex]\[ p(x) = x^3 - 2x^2 - 4x^2 + 8x \][/tex]
Notice that we have two terms involving [tex]\( x^2 \)[/tex]. Combine them:
[tex]\[ p(x) = x^3 - 6x^2 + 8x \][/tex]
2. Factor out the greatest common factor:
Next, we look for the greatest common factor (GCF) in the polynomial. Each term has a common factor of [tex]\( x \)[/tex]:
[tex]\[ p(x) = x(x^2 - 6x + 8) \][/tex]
3. Factor the quadratic expression:
Now, we need to factor the quadratic expression [tex]\( x^2 - 6x + 8 \)[/tex]. We look for two numbers that multiply to +8 and add to -6. Those numbers are -2 and -4:
[tex]\[ x^2 - 6x + 8 = (x - 4)(x - 2) \][/tex]
4. Combine all the factors:
Now we combine all the factors:
[tex]\[ p(x) = x(x - 4)(x - 2) \][/tex]
So, the factors of the polynomial [tex]\( p(x) = x^3 - 2x^2 - 4x^2 + 8x \)[/tex] are:
[tex]\[ x(x - 4)(x - 2) \][/tex]
Therefore, the factored form of the polynomial is:
[tex]\[ x(x - 4)(x - 2) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.