Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyze the parent function [tex]\( f(x) = e^x \)[/tex] and the transformed function [tex]\( g(x) = f(x+3) = e^{x+3} \)[/tex] in detail to determine which feature differs between them.
1. Y-Intercept:
- The y-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
- For [tex]\( f(x) \)[/tex], we have:
[tex]\[ f(0) = e^0 = 1 \][/tex]
- For [tex]\( g(x) \)[/tex], we have:
[tex]\[ g(0) = e^{0+3} = e^3 \approx 20.085536923187668 \][/tex]
- Therefore, the y-intercepts are different: [tex]\( f(x) \)[/tex] has a y-intercept of [tex]\( 1 \)[/tex] and [tex]\( g(x) \)[/tex] has a y-intercept of approximately [tex]\( 20.085536923187668 \)[/tex].
2. Range:
- The range of the parent function [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex] since [tex]\( e^x \)[/tex] is always positive for all real [tex]\( x \)[/tex].
- Transforming [tex]\( f(x) \)[/tex] by shifting it horizontally does not change the range.
- Thus, the range of [tex]\( g(x) = e^{x+3} \)[/tex] is also [tex]\( (0, \infty) \)[/tex].
- So, the range remains the same for both functions.
3. Domain:
- The domain of [tex]\( f(x) = e^x \)[/tex] is all real numbers [tex]\( (-\infty, \infty) \)[/tex] because [tex]\( e^x \)[/tex] is defined for all real [tex]\( x \)[/tex].
- Similarly, [tex]\( g(x) = e^{x+3} \)[/tex] is also defined for all real [tex]\( x \)[/tex].
- Thus, the domain remains the same for both functions.
4. Horizontal Asymptote:
- The horizontal asymptote of [tex]\( f(x) = e^x \)[/tex] is [tex]\( y = 0 \)[/tex], since as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex], [tex]\( e^x \)[/tex] approaches [tex]\( 0 \)[/tex].
- Shifting [tex]\( f(x) \)[/tex] horizontally to obtain [tex]\( g(x) \)[/tex] does not affect the horizontal asymptote.
- Therefore, the horizontal asymptote of [tex]\( g(x) = e^{x+3} \)[/tex] is also [tex]\( y = 0 \)[/tex].
Given this analysis, the feature that differs between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is the y-intercept. Thus, the correct answer is:
[tex]$y$[/tex]-Intercept
1. Y-Intercept:
- The y-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
- For [tex]\( f(x) \)[/tex], we have:
[tex]\[ f(0) = e^0 = 1 \][/tex]
- For [tex]\( g(x) \)[/tex], we have:
[tex]\[ g(0) = e^{0+3} = e^3 \approx 20.085536923187668 \][/tex]
- Therefore, the y-intercepts are different: [tex]\( f(x) \)[/tex] has a y-intercept of [tex]\( 1 \)[/tex] and [tex]\( g(x) \)[/tex] has a y-intercept of approximately [tex]\( 20.085536923187668 \)[/tex].
2. Range:
- The range of the parent function [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex] since [tex]\( e^x \)[/tex] is always positive for all real [tex]\( x \)[/tex].
- Transforming [tex]\( f(x) \)[/tex] by shifting it horizontally does not change the range.
- Thus, the range of [tex]\( g(x) = e^{x+3} \)[/tex] is also [tex]\( (0, \infty) \)[/tex].
- So, the range remains the same for both functions.
3. Domain:
- The domain of [tex]\( f(x) = e^x \)[/tex] is all real numbers [tex]\( (-\infty, \infty) \)[/tex] because [tex]\( e^x \)[/tex] is defined for all real [tex]\( x \)[/tex].
- Similarly, [tex]\( g(x) = e^{x+3} \)[/tex] is also defined for all real [tex]\( x \)[/tex].
- Thus, the domain remains the same for both functions.
4. Horizontal Asymptote:
- The horizontal asymptote of [tex]\( f(x) = e^x \)[/tex] is [tex]\( y = 0 \)[/tex], since as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex], [tex]\( e^x \)[/tex] approaches [tex]\( 0 \)[/tex].
- Shifting [tex]\( f(x) \)[/tex] horizontally to obtain [tex]\( g(x) \)[/tex] does not affect the horizontal asymptote.
- Therefore, the horizontal asymptote of [tex]\( g(x) = e^{x+3} \)[/tex] is also [tex]\( y = 0 \)[/tex].
Given this analysis, the feature that differs between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is the y-intercept. Thus, the correct answer is:
[tex]$y$[/tex]-Intercept
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.