At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the limit of the sequence as [tex]\( n \)[/tex] approaches infinity, we start by analyzing the given expression for [tex]\( a_n \)[/tex]:
[tex]\[ a_n = \frac{4 + n - 4n^2}{5n^2 + 9} \][/tex]
Step 1: Identify the highest power of [tex]\( n \)[/tex] in both the numerator and the denominator. In this case, the highest power of [tex]\( n \)[/tex] in the numerator is [tex]\( n^2 \)[/tex] and in the denominator is also [tex]\( n^2 \)[/tex].
Step 2: To simplify the expression, we divide every term in the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{n}{n^2} - 4}{5 + \frac{9}{n^2}} \][/tex]
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{1}{n} - 4}{5 + \frac{9}{n^2}} \][/tex]
Step 3: As [tex]\( n \)[/tex] approaches infinity, the terms [tex]\(\frac{4}{n^2}\)[/tex], [tex]\(\frac{1}{n}\)[/tex], and [tex]\(\frac{9}{n^2}\)[/tex] all approach 0. Thus, the expression simplifies to:
[tex]\[ a_n = \frac{0 + 0 - 4}{5 + 0} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
Therefore, the limit of the sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_ {n \rightarrow \infty} a_n = -\frac{4}{5} \][/tex]
[tex]\[ a_n = \frac{4 + n - 4n^2}{5n^2 + 9} \][/tex]
Step 1: Identify the highest power of [tex]\( n \)[/tex] in both the numerator and the denominator. In this case, the highest power of [tex]\( n \)[/tex] in the numerator is [tex]\( n^2 \)[/tex] and in the denominator is also [tex]\( n^2 \)[/tex].
Step 2: To simplify the expression, we divide every term in the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{n}{n^2} - 4}{5 + \frac{9}{n^2}} \][/tex]
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{1}{n} - 4}{5 + \frac{9}{n^2}} \][/tex]
Step 3: As [tex]\( n \)[/tex] approaches infinity, the terms [tex]\(\frac{4}{n^2}\)[/tex], [tex]\(\frac{1}{n}\)[/tex], and [tex]\(\frac{9}{n^2}\)[/tex] all approach 0. Thus, the expression simplifies to:
[tex]\[ a_n = \frac{0 + 0 - 4}{5 + 0} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
Therefore, the limit of the sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_ {n \rightarrow \infty} a_n = -\frac{4}{5} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.