Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the limit of the sequence as [tex]\( n \)[/tex] approaches infinity, we start by analyzing the given expression for [tex]\( a_n \)[/tex]:
[tex]\[ a_n = \frac{4 + n - 4n^2}{5n^2 + 9} \][/tex]
Step 1: Identify the highest power of [tex]\( n \)[/tex] in both the numerator and the denominator. In this case, the highest power of [tex]\( n \)[/tex] in the numerator is [tex]\( n^2 \)[/tex] and in the denominator is also [tex]\( n^2 \)[/tex].
Step 2: To simplify the expression, we divide every term in the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{n}{n^2} - 4}{5 + \frac{9}{n^2}} \][/tex]
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{1}{n} - 4}{5 + \frac{9}{n^2}} \][/tex]
Step 3: As [tex]\( n \)[/tex] approaches infinity, the terms [tex]\(\frac{4}{n^2}\)[/tex], [tex]\(\frac{1}{n}\)[/tex], and [tex]\(\frac{9}{n^2}\)[/tex] all approach 0. Thus, the expression simplifies to:
[tex]\[ a_n = \frac{0 + 0 - 4}{5 + 0} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
Therefore, the limit of the sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_ {n \rightarrow \infty} a_n = -\frac{4}{5} \][/tex]
[tex]\[ a_n = \frac{4 + n - 4n^2}{5n^2 + 9} \][/tex]
Step 1: Identify the highest power of [tex]\( n \)[/tex] in both the numerator and the denominator. In this case, the highest power of [tex]\( n \)[/tex] in the numerator is [tex]\( n^2 \)[/tex] and in the denominator is also [tex]\( n^2 \)[/tex].
Step 2: To simplify the expression, we divide every term in the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{n}{n^2} - 4}{5 + \frac{9}{n^2}} \][/tex]
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{1}{n} - 4}{5 + \frac{9}{n^2}} \][/tex]
Step 3: As [tex]\( n \)[/tex] approaches infinity, the terms [tex]\(\frac{4}{n^2}\)[/tex], [tex]\(\frac{1}{n}\)[/tex], and [tex]\(\frac{9}{n^2}\)[/tex] all approach 0. Thus, the expression simplifies to:
[tex]\[ a_n = \frac{0 + 0 - 4}{5 + 0} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
Therefore, the limit of the sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_ {n \rightarrow \infty} a_n = -\frac{4}{5} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.