Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the given problem, we need to set up the equation correctly based on the airplane's speed and the influence of the wind on its travel time.
Let [tex]\( x \)[/tex] be the speed of the airplane in still air, in miles per hour (mph).
### Step-by-Step Solution:
1. Determine the speed of the airplane with and against the wind:
- With the wind: [tex]\( x + 20 \)[/tex] mph
- Against the wind: [tex]\( x - 20 \)[/tex] mph
2. Determine the time taken for each leg of the trip:
- The distance for each leg is 350 miles.
- Time taken to travel with the wind: [tex]\( \frac{350}{x + 20} \)[/tex] hours
- Time taken to travel against the wind: [tex]\( \frac{350}{x - 20} \)[/tex] hours
3. Set up the equation for the total round-trip time:
- The total time for the round trip is given as 6 hours.
- Therefore, we write the equation:
[tex]\[ \frac{350}{x + 20} + \frac{350}{x - 20} = 6 \][/tex]
### Final Equation:
To rewrite it by replacing [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ a = \frac{350}{x + 20}, \quad b = \frac{350}{x - 20}, \quad c = 6 \][/tex]
Thus, the equation in terms of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] becomes:
[tex]\[ a + b = c \][/tex]
where:
[tex]\[ \frac{350}{x + 20} + \frac{350}{x - 20} = 6 \][/tex]
Now, let's explicitly state [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ a = \frac{350}{x + 20}, \quad b = \frac{350}{x - 20}, \quad c = 6 \][/tex]
Inserting the values into the final form:
[tex]\( \boxed{ \frac{350}{x + 20} + \frac{350}{x - 20} = 6 } \)[/tex]
This is the correct equation that describes the situation.
Let [tex]\( x \)[/tex] be the speed of the airplane in still air, in miles per hour (mph).
### Step-by-Step Solution:
1. Determine the speed of the airplane with and against the wind:
- With the wind: [tex]\( x + 20 \)[/tex] mph
- Against the wind: [tex]\( x - 20 \)[/tex] mph
2. Determine the time taken for each leg of the trip:
- The distance for each leg is 350 miles.
- Time taken to travel with the wind: [tex]\( \frac{350}{x + 20} \)[/tex] hours
- Time taken to travel against the wind: [tex]\( \frac{350}{x - 20} \)[/tex] hours
3. Set up the equation for the total round-trip time:
- The total time for the round trip is given as 6 hours.
- Therefore, we write the equation:
[tex]\[ \frac{350}{x + 20} + \frac{350}{x - 20} = 6 \][/tex]
### Final Equation:
To rewrite it by replacing [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ a = \frac{350}{x + 20}, \quad b = \frac{350}{x - 20}, \quad c = 6 \][/tex]
Thus, the equation in terms of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] becomes:
[tex]\[ a + b = c \][/tex]
where:
[tex]\[ \frac{350}{x + 20} + \frac{350}{x - 20} = 6 \][/tex]
Now, let's explicitly state [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ a = \frac{350}{x + 20}, \quad b = \frac{350}{x - 20}, \quad c = 6 \][/tex]
Inserting the values into the final form:
[tex]\( \boxed{ \frac{350}{x + 20} + \frac{350}{x - 20} = 6 } \)[/tex]
This is the correct equation that describes the situation.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.