Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

What is the product?

[tex]\[ \frac{4n}{4n-4} \cdot \frac{n-1}{n+1} \][/tex]

A. [tex]\(\frac{4n}{n+1}\)[/tex]

B. [tex]\(\frac{n}{n+1}\)[/tex]

C. [tex]\(\frac{1}{n+1}\)[/tex]

D. [tex]\(\frac{4}{n+1}\)[/tex]

Sagot :

To find the product of the fractions
[tex]\[ \frac{4n}{4n-4} \cdot \frac{n-1}{n+1}, \][/tex]
we need to simplify each part of the expression before multiplying them together.

Firstly, let's simplify [tex]\(\frac{4n}{4n-4}\)[/tex]:

1. Factor out a common term from the denominator:
[tex]\[ 4n - 4 = 4(n - 1). \][/tex]

2. Now the fraction becomes:
[tex]\[ \frac{4n}{4(n - 1)} = \frac{4n}{4(n - 1)}. \][/tex]

3. We can cancel out the common factor of 4:
[tex]\[ \frac{4n}{4(n - 1)} = \frac{n}{n - 1}. \][/tex]

So, the simplified form of [tex]\(\frac{4n}{4n-4}\)[/tex] is [tex]\(\frac{n}{n-1}\)[/tex].

Secondly, consider the fraction [tex]\(\frac{n-1}{n+1}\)[/tex]:

The fraction [tex]\(\frac{n-1}{n+1}\)[/tex] is already in its simplest form.

Now, we multiply the two simplified fractions together:
[tex]\[ \frac{n}{n-1} \cdot \frac{n-1}{n+1}. \][/tex]

Notice that [tex]\((n-1)\)[/tex] appears once in the numerator and once in the denominator, so they cancel each other out:
[tex]\[ \frac{n}{n-1} \cdot \frac{n-1}{n+1} = \frac{n \cancel{(n-1)}}{\cancel{(n-1)}(n+1)} = \frac{n}{n+1}. \][/tex]

Therefore, the product of the given fractions simplifies to:
[tex]\[ \boxed{\frac{n}{n+1}}. \][/tex]