Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the strength of the correlation between the total cost of items and the shipping costs, we need to calculate the Pearson correlation coefficient. The Pearson correlation coefficient measures the linear relationship between two datasets.
Here is a step-by-step guide:
1. List Down Data Points:
- Total cost of items: 25, 45, 50, 70
- Shipping costs: 5.99, 8.99, 8.99, 10.99
2. Calculate Means:
- Mean of total cost of items [tex]\[(\bar{x}) = \frac{25 + 45 + 50 + 70}{4} = \frac{190}{4} = 47.5\][/tex]
- Mean of shipping costs [tex]\[(\bar{y}) = \frac{5.99 + 8.99 + 8.99 + 10.99}{4} = \frac{34.96}{4} = 8.74\][/tex]
3. Calculate Deviations:
- Deviations from the mean for total cost of items:
- [tex]\(25 - 47.5 = -22.5\)[/tex]
- [tex]\(45 - 47.5 = -2.5\)[/tex]
- [tex]\(50 - 47.5 = 2.5\)[/tex]
- [tex]\(70 - 47.5 = 22.5\)[/tex]
- Deviations from the mean for shipping costs:
- [tex]\(5.99 - 8.74 = -2.75\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(10.99 - 8.74 = 2.25\)[/tex]
4. Calculate Covariance:
[tex]\[ \text{Cov}(X, Y) = \frac{1}{n-1} \sum{(x_i - \bar{x})(y_i - \bar{y})} \][/tex]
[tex]\[ \text{Cov}(X, Y) = \frac{1}{3}((-22.5 \cdot -2.75) + (-2.5 \cdot 0.25) + (2.5 \cdot 0.25) + (22.5 \cdot 2.25)) \][/tex]
[tex]\[ = \frac{1}{3}(61.875 + -0.625 + 0.625 + 50.625) = \frac{1}{3}(112.5) = 37.5 \][/tex]
5. Calculate Standard Deviations:
- Standard deviation of total cost of items ([tex]\( \sigma_X \)[/tex]):
[tex]\[ \sigma_X = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2} = \sqrt{\frac{1}{3}((-22.5)^2 + (-2.5)^2 + (2.5)^2 + (22.5)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(506.25 + 6.25 + 6.25 + 506.25)} = \sqrt{341.67} = 18.48 \][/tex]
- Standard deviation of shipping costs ([tex]\( \sigma_Y \)[/tex]):
[tex]\[ \sigma_Y = \sqrt{\frac{1}{n-1} \sum (y_i - \bar{y})^2} = \sqrt{\frac{1}{3}((-2.75)^2 + (0.25)^2 + (0.25)^2 + (2.25)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(7.5625 + 0.0625 + 0.0625 + 5.0625)} = \sqrt{4.25} = 2.06 \][/tex]
6. Calculate Correlation Coefficient:
[tex]\[ r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{37.5}{18.48 \cdot 2.06} = \frac{37.5}{38.07} \approx 0.984 \][/tex]
7. Interpret the Correlation Coefficient:
- If [tex]\( r \)[/tex] is 0.984, this indicates a strong positive correlation (since 0.984 is much closer to 1).
Hence, the correct description for the strength of the model is "a strong positive correlation".
Here is a step-by-step guide:
1. List Down Data Points:
- Total cost of items: 25, 45, 50, 70
- Shipping costs: 5.99, 8.99, 8.99, 10.99
2. Calculate Means:
- Mean of total cost of items [tex]\[(\bar{x}) = \frac{25 + 45 + 50 + 70}{4} = \frac{190}{4} = 47.5\][/tex]
- Mean of shipping costs [tex]\[(\bar{y}) = \frac{5.99 + 8.99 + 8.99 + 10.99}{4} = \frac{34.96}{4} = 8.74\][/tex]
3. Calculate Deviations:
- Deviations from the mean for total cost of items:
- [tex]\(25 - 47.5 = -22.5\)[/tex]
- [tex]\(45 - 47.5 = -2.5\)[/tex]
- [tex]\(50 - 47.5 = 2.5\)[/tex]
- [tex]\(70 - 47.5 = 22.5\)[/tex]
- Deviations from the mean for shipping costs:
- [tex]\(5.99 - 8.74 = -2.75\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(10.99 - 8.74 = 2.25\)[/tex]
4. Calculate Covariance:
[tex]\[ \text{Cov}(X, Y) = \frac{1}{n-1} \sum{(x_i - \bar{x})(y_i - \bar{y})} \][/tex]
[tex]\[ \text{Cov}(X, Y) = \frac{1}{3}((-22.5 \cdot -2.75) + (-2.5 \cdot 0.25) + (2.5 \cdot 0.25) + (22.5 \cdot 2.25)) \][/tex]
[tex]\[ = \frac{1}{3}(61.875 + -0.625 + 0.625 + 50.625) = \frac{1}{3}(112.5) = 37.5 \][/tex]
5. Calculate Standard Deviations:
- Standard deviation of total cost of items ([tex]\( \sigma_X \)[/tex]):
[tex]\[ \sigma_X = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2} = \sqrt{\frac{1}{3}((-22.5)^2 + (-2.5)^2 + (2.5)^2 + (22.5)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(506.25 + 6.25 + 6.25 + 506.25)} = \sqrt{341.67} = 18.48 \][/tex]
- Standard deviation of shipping costs ([tex]\( \sigma_Y \)[/tex]):
[tex]\[ \sigma_Y = \sqrt{\frac{1}{n-1} \sum (y_i - \bar{y})^2} = \sqrt{\frac{1}{3}((-2.75)^2 + (0.25)^2 + (0.25)^2 + (2.25)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(7.5625 + 0.0625 + 0.0625 + 5.0625)} = \sqrt{4.25} = 2.06 \][/tex]
6. Calculate Correlation Coefficient:
[tex]\[ r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{37.5}{18.48 \cdot 2.06} = \frac{37.5}{38.07} \approx 0.984 \][/tex]
7. Interpret the Correlation Coefficient:
- If [tex]\( r \)[/tex] is 0.984, this indicates a strong positive correlation (since 0.984 is much closer to 1).
Hence, the correct description for the strength of the model is "a strong positive correlation".
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.