Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the strength of the correlation between the total cost of items and the shipping costs, we need to calculate the Pearson correlation coefficient. The Pearson correlation coefficient measures the linear relationship between two datasets.
Here is a step-by-step guide:
1. List Down Data Points:
- Total cost of items: 25, 45, 50, 70
- Shipping costs: 5.99, 8.99, 8.99, 10.99
2. Calculate Means:
- Mean of total cost of items [tex]\[(\bar{x}) = \frac{25 + 45 + 50 + 70}{4} = \frac{190}{4} = 47.5\][/tex]
- Mean of shipping costs [tex]\[(\bar{y}) = \frac{5.99 + 8.99 + 8.99 + 10.99}{4} = \frac{34.96}{4} = 8.74\][/tex]
3. Calculate Deviations:
- Deviations from the mean for total cost of items:
- [tex]\(25 - 47.5 = -22.5\)[/tex]
- [tex]\(45 - 47.5 = -2.5\)[/tex]
- [tex]\(50 - 47.5 = 2.5\)[/tex]
- [tex]\(70 - 47.5 = 22.5\)[/tex]
- Deviations from the mean for shipping costs:
- [tex]\(5.99 - 8.74 = -2.75\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(10.99 - 8.74 = 2.25\)[/tex]
4. Calculate Covariance:
[tex]\[ \text{Cov}(X, Y) = \frac{1}{n-1} \sum{(x_i - \bar{x})(y_i - \bar{y})} \][/tex]
[tex]\[ \text{Cov}(X, Y) = \frac{1}{3}((-22.5 \cdot -2.75) + (-2.5 \cdot 0.25) + (2.5 \cdot 0.25) + (22.5 \cdot 2.25)) \][/tex]
[tex]\[ = \frac{1}{3}(61.875 + -0.625 + 0.625 + 50.625) = \frac{1}{3}(112.5) = 37.5 \][/tex]
5. Calculate Standard Deviations:
- Standard deviation of total cost of items ([tex]\( \sigma_X \)[/tex]):
[tex]\[ \sigma_X = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2} = \sqrt{\frac{1}{3}((-22.5)^2 + (-2.5)^2 + (2.5)^2 + (22.5)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(506.25 + 6.25 + 6.25 + 506.25)} = \sqrt{341.67} = 18.48 \][/tex]
- Standard deviation of shipping costs ([tex]\( \sigma_Y \)[/tex]):
[tex]\[ \sigma_Y = \sqrt{\frac{1}{n-1} \sum (y_i - \bar{y})^2} = \sqrt{\frac{1}{3}((-2.75)^2 + (0.25)^2 + (0.25)^2 + (2.25)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(7.5625 + 0.0625 + 0.0625 + 5.0625)} = \sqrt{4.25} = 2.06 \][/tex]
6. Calculate Correlation Coefficient:
[tex]\[ r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{37.5}{18.48 \cdot 2.06} = \frac{37.5}{38.07} \approx 0.984 \][/tex]
7. Interpret the Correlation Coefficient:
- If [tex]\( r \)[/tex] is 0.984, this indicates a strong positive correlation (since 0.984 is much closer to 1).
Hence, the correct description for the strength of the model is "a strong positive correlation".
Here is a step-by-step guide:
1. List Down Data Points:
- Total cost of items: 25, 45, 50, 70
- Shipping costs: 5.99, 8.99, 8.99, 10.99
2. Calculate Means:
- Mean of total cost of items [tex]\[(\bar{x}) = \frac{25 + 45 + 50 + 70}{4} = \frac{190}{4} = 47.5\][/tex]
- Mean of shipping costs [tex]\[(\bar{y}) = \frac{5.99 + 8.99 + 8.99 + 10.99}{4} = \frac{34.96}{4} = 8.74\][/tex]
3. Calculate Deviations:
- Deviations from the mean for total cost of items:
- [tex]\(25 - 47.5 = -22.5\)[/tex]
- [tex]\(45 - 47.5 = -2.5\)[/tex]
- [tex]\(50 - 47.5 = 2.5\)[/tex]
- [tex]\(70 - 47.5 = 22.5\)[/tex]
- Deviations from the mean for shipping costs:
- [tex]\(5.99 - 8.74 = -2.75\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(8.99 - 8.74 = 0.25\)[/tex]
- [tex]\(10.99 - 8.74 = 2.25\)[/tex]
4. Calculate Covariance:
[tex]\[ \text{Cov}(X, Y) = \frac{1}{n-1} \sum{(x_i - \bar{x})(y_i - \bar{y})} \][/tex]
[tex]\[ \text{Cov}(X, Y) = \frac{1}{3}((-22.5 \cdot -2.75) + (-2.5 \cdot 0.25) + (2.5 \cdot 0.25) + (22.5 \cdot 2.25)) \][/tex]
[tex]\[ = \frac{1}{3}(61.875 + -0.625 + 0.625 + 50.625) = \frac{1}{3}(112.5) = 37.5 \][/tex]
5. Calculate Standard Deviations:
- Standard deviation of total cost of items ([tex]\( \sigma_X \)[/tex]):
[tex]\[ \sigma_X = \sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2} = \sqrt{\frac{1}{3}((-22.5)^2 + (-2.5)^2 + (2.5)^2 + (22.5)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(506.25 + 6.25 + 6.25 + 506.25)} = \sqrt{341.67} = 18.48 \][/tex]
- Standard deviation of shipping costs ([tex]\( \sigma_Y \)[/tex]):
[tex]\[ \sigma_Y = \sqrt{\frac{1}{n-1} \sum (y_i - \bar{y})^2} = \sqrt{\frac{1}{3}((-2.75)^2 + (0.25)^2 + (0.25)^2 + (2.25)^2)} \][/tex]
[tex]\[ = \sqrt{\frac{1}{3}(7.5625 + 0.0625 + 0.0625 + 5.0625)} = \sqrt{4.25} = 2.06 \][/tex]
6. Calculate Correlation Coefficient:
[tex]\[ r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{37.5}{18.48 \cdot 2.06} = \frac{37.5}{38.07} \approx 0.984 \][/tex]
7. Interpret the Correlation Coefficient:
- If [tex]\( r \)[/tex] is 0.984, this indicates a strong positive correlation (since 0.984 is much closer to 1).
Hence, the correct description for the strength of the model is "a strong positive correlation".
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.