Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equation that shows the number of measures [tex]\( m \)[/tex] Harita still needs to memorize as a function of [tex]\( d \)[/tex] days of practice:
1. Identify the total number of measures Harita needs to memorize: [tex]\( 90 \)[/tex] measures.
2. Identify the number of measures she memorizes over a set period: Harita memorizes [tex]\( 18 \)[/tex] measures every [tex]\( 3 \)[/tex] days.
3. Determine the number of measures memorized per day:
[tex]\[ \text{Measures per day} = \frac{\text{Measures per 3 days}}{3} = \frac{18}{3} = 6 \text{ measures per day} \][/tex]
4. Define the relationship between the number of days [tex]\( d \)[/tex] and the number of measures memorized:
If Harita memorizes [tex]\( 6 \)[/tex] measures per day, then after [tex]\( d \)[/tex] days, she will have memorized [tex]\( 6d \)[/tex] measures.
5. Formulate the equation for the number of measures left to memorize:
Harita started with [tex]\( 90 \)[/tex] measures, and she reduces this by the number of measures she has memorized after [tex]\( d \)[/tex] days:
[tex]\[ m = 90 - 6d \][/tex]
Here,
- [tex]\( 90 \)[/tex] is the initial total number of measures.
- [tex]\( 6d \)[/tex] is the number of measures she has memorized after [tex]\( d \)[/tex] days.
6. Verify the options provided:
- [tex]\( m = 72 - 15d \)[/tex]
- [tex]\( m = 90 - 6d \)[/tex]
- [tex]\( m = 101 - 21d \)[/tex]
- [tex]\( m = 108 - 3d \)[/tex]
The correct equation that represents the number of measures Harita still needs to memorize, given she memorizes 6 measures per day, is:
[tex]\[ m = 90 - 6d \][/tex]
1. Identify the total number of measures Harita needs to memorize: [tex]\( 90 \)[/tex] measures.
2. Identify the number of measures she memorizes over a set period: Harita memorizes [tex]\( 18 \)[/tex] measures every [tex]\( 3 \)[/tex] days.
3. Determine the number of measures memorized per day:
[tex]\[ \text{Measures per day} = \frac{\text{Measures per 3 days}}{3} = \frac{18}{3} = 6 \text{ measures per day} \][/tex]
4. Define the relationship between the number of days [tex]\( d \)[/tex] and the number of measures memorized:
If Harita memorizes [tex]\( 6 \)[/tex] measures per day, then after [tex]\( d \)[/tex] days, she will have memorized [tex]\( 6d \)[/tex] measures.
5. Formulate the equation for the number of measures left to memorize:
Harita started with [tex]\( 90 \)[/tex] measures, and she reduces this by the number of measures she has memorized after [tex]\( d \)[/tex] days:
[tex]\[ m = 90 - 6d \][/tex]
Here,
- [tex]\( 90 \)[/tex] is the initial total number of measures.
- [tex]\( 6d \)[/tex] is the number of measures she has memorized after [tex]\( d \)[/tex] days.
6. Verify the options provided:
- [tex]\( m = 72 - 15d \)[/tex]
- [tex]\( m = 90 - 6d \)[/tex]
- [tex]\( m = 101 - 21d \)[/tex]
- [tex]\( m = 108 - 3d \)[/tex]
The correct equation that represents the number of measures Harita still needs to memorize, given she memorizes 6 measures per day, is:
[tex]\[ m = 90 - 6d \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.