Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the vertical asymptotes of the function [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex], we need to determine where the function becomes undefined. This occurs when the denominator equals zero, but the numerator does not simultaneously equal zero.
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.