Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the vertical asymptotes of the function [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex], we need to determine where the function becomes undefined. This occurs when the denominator equals zero, but the numerator does not simultaneously equal zero.
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.