Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the vertical asymptotes of the function [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex], we need to determine where the function becomes undefined. This occurs when the denominator equals zero, but the numerator does not simultaneously equal zero.
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.