Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the vertical asymptotes of the function [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex], we need to determine where the function becomes undefined. This occurs when the denominator equals zero, but the numerator does not simultaneously equal zero.
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
First, let's analyze the denominator:
[tex]\[ x^3 - 81x = 0 \][/tex]
We can factor this expression:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
Therefore, the potential points where the function could have vertical asymptotes are [tex]\( x = 0 \)[/tex], [tex]\( x = 9 \)[/tex], and [tex]\( x = -9 \)[/tex].
Next, we need to check if the numerator, [tex]\( x - 9 \)[/tex], equals zero at any of these values:
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
At [tex]\( x = 9 \)[/tex], both the numerator and the denominator equal zero. This indicates a hole in the graph at [tex]\( x = 9 \)[/tex] rather than a vertical asymptote.
Now, let's revisit our other candidates for vertical asymptotes where the denominator is zero, but the numerator is not:
- For [tex]\( x = 0 \)[/tex], the denominator is zero ([tex]\( 0 \cdot (-81) = 0 \)[/tex]), but the numerator is [tex]\( 0 - 9 = -9 \)[/tex].
- For [tex]\( x = -9 \)[/tex], the denominator is zero ([tex]\( -9 \cdot 0 \cdot (-18) = 0 \)[/tex]), but the numerator is [tex]\( -9 - 9 = -18 \)[/tex].
Since the numerator does not equal zero at [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex], these values create vertical asymptotes.
Therefore, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are at:
[tex]\[ \boxed{x = 0 \text{ and } x = -9} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.