At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether there is convincing evidence that it rains less often than "every day" (99% of the days) in Seattle, we perform a hypothesis test for the proportion of days that it rains.
### Step-by-Step Solution
#### Step 1: State the Hypotheses
We need to set up our null and alternative hypotheses:
- [tex]\( H_0: p = 0.99 \)[/tex] (The true proportion of days it rains is 99%)
- [tex]\( H_a: p < 0.99 \)[/tex] (The true proportion of days it rains is less than 99%)
#### Step 2: Collect Data and Compute the Sample Proportion
In a sample of 50 days, it rained on 46 days. Therefore, the sample proportion [tex]\( \hat{p} \)[/tex] is:
[tex]\[ \hat{p} = \frac{46}{50} = 0.92 \][/tex]
#### Step 3: Calculate the Standard Error
The standard error (SE) of the sample proportion under the null hypothesis is calculated as:
[tex]\[ \text{SE} = \sqrt{\frac{p_0(1 - p_0)}{n}} \][/tex]
Plugging in the values:
[tex]\[ \text{SE} = \sqrt{\frac{0.99 \cdot (1 - 0.99)}{50}} = 0.014071247279470294 \][/tex]
#### Step 4: Compute the Test Statistic (Z-score)
The Z-score for the sample proportion is calculated as:
[tex]\[ Z = \frac{\hat{p} - p_0}{\text{SE}} \][/tex]
Substituting the values:
[tex]\[ Z = \frac{0.92 - 0.99}{0.014071247279470294} = -4.974683381630904 \][/tex]
#### Step 5: Obtain the P-value
The P-value is the probability of observing a test statistic as extreme as, or more extreme than, the one observed under the null hypothesis. For a left-tailed test, the P-value is:
[tex]\[ \text{P-value} = P(Z \leq -4.974683381630904) = 3.2677185178473833 \times 10^{-7} \][/tex]
#### Step 6: Make the Decision
To determine whether to reject the null hypothesis, we compare the P-value to the significance level [tex]\( \alpha = 0.05 \)[/tex].
Given:
[tex]\[ \text{P-value} = 3.2677185178473833 \times 10^{-7} \][/tex]
[tex]\[ \alpha = 0.05 \][/tex]
Since the P-value is much smaller than [tex]\( \alpha \)[/tex] (0.05), we reject the null hypothesis.
#### Conclusion
Because [tex]\( 0 < 0.05 \)[/tex], we reject [tex]\( H_0 \)[/tex]. This means we have convincing evidence at the [tex]\( \alpha = 0.05 \)[/tex] level to conclude that it rains less often than "every day" (99% of the days) in Seattle.
Therefore, the decision is:
Because [tex]\( 0 < 0.05 \)[/tex], we reject [tex]\( H_0 \)[/tex].
### Step-by-Step Solution
#### Step 1: State the Hypotheses
We need to set up our null and alternative hypotheses:
- [tex]\( H_0: p = 0.99 \)[/tex] (The true proportion of days it rains is 99%)
- [tex]\( H_a: p < 0.99 \)[/tex] (The true proportion of days it rains is less than 99%)
#### Step 2: Collect Data and Compute the Sample Proportion
In a sample of 50 days, it rained on 46 days. Therefore, the sample proportion [tex]\( \hat{p} \)[/tex] is:
[tex]\[ \hat{p} = \frac{46}{50} = 0.92 \][/tex]
#### Step 3: Calculate the Standard Error
The standard error (SE) of the sample proportion under the null hypothesis is calculated as:
[tex]\[ \text{SE} = \sqrt{\frac{p_0(1 - p_0)}{n}} \][/tex]
Plugging in the values:
[tex]\[ \text{SE} = \sqrt{\frac{0.99 \cdot (1 - 0.99)}{50}} = 0.014071247279470294 \][/tex]
#### Step 4: Compute the Test Statistic (Z-score)
The Z-score for the sample proportion is calculated as:
[tex]\[ Z = \frac{\hat{p} - p_0}{\text{SE}} \][/tex]
Substituting the values:
[tex]\[ Z = \frac{0.92 - 0.99}{0.014071247279470294} = -4.974683381630904 \][/tex]
#### Step 5: Obtain the P-value
The P-value is the probability of observing a test statistic as extreme as, or more extreme than, the one observed under the null hypothesis. For a left-tailed test, the P-value is:
[tex]\[ \text{P-value} = P(Z \leq -4.974683381630904) = 3.2677185178473833 \times 10^{-7} \][/tex]
#### Step 6: Make the Decision
To determine whether to reject the null hypothesis, we compare the P-value to the significance level [tex]\( \alpha = 0.05 \)[/tex].
Given:
[tex]\[ \text{P-value} = 3.2677185178473833 \times 10^{-7} \][/tex]
[tex]\[ \alpha = 0.05 \][/tex]
Since the P-value is much smaller than [tex]\( \alpha \)[/tex] (0.05), we reject the null hypothesis.
#### Conclusion
Because [tex]\( 0 < 0.05 \)[/tex], we reject [tex]\( H_0 \)[/tex]. This means we have convincing evidence at the [tex]\( \alpha = 0.05 \)[/tex] level to conclude that it rains less often than "every day" (99% of the days) in Seattle.
Therefore, the decision is:
Because [tex]\( 0 < 0.05 \)[/tex], we reject [tex]\( H_0 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.