Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the end behavior of the polynomial function [tex]\( y = 10x^9 - 4x \)[/tex], we need to focus on the term with the highest degree in the polynomial, as it will dominate the behavior of the function as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex].
1. Identify the leading term:
The leading term in the polynomial [tex]\( y = 10x^9 - 4x \)[/tex] is [tex]\( 10x^9 \)[/tex] because it has the highest degree.
2. Determine the behavior of the leading term:
- For even-degree polynomials, the end behavior depends on the sign of the leading coefficient.
- For odd-degree polynomials, the end behavior is different in the [tex]\( x \to \infty \)[/tex] direction compared to the [tex]\( x \to -\infty \)[/tex] direction.
- If the leading coefficient is positive, as [tex]\( x \to \infty \)[/tex], [tex]\( y \to \infty \)[/tex] and as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].
- If the leading coefficient is negative, as [tex]\( x \to \infty \)[/tex], [tex]\( y \to -\infty \)[/tex] and as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to \infty \)[/tex].
Since we are dealing with the polynomial [tex]\( 10x^9 \)[/tex], it is an odd-degree polynomial (degree 9) with a positive leading coefficient (10).
Thus, the end behavior is:
- As [tex]\( x \to \infty \)[/tex], [tex]\( y \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].
So, the correct choice is:
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].
Thus, the correct end behavior is:
[tex]\[ \text{As } x \to -\infty, y \to -\infty \text{ and as } x \to \infty, y \to \infty. \][/tex]
1. Identify the leading term:
The leading term in the polynomial [tex]\( y = 10x^9 - 4x \)[/tex] is [tex]\( 10x^9 \)[/tex] because it has the highest degree.
2. Determine the behavior of the leading term:
- For even-degree polynomials, the end behavior depends on the sign of the leading coefficient.
- For odd-degree polynomials, the end behavior is different in the [tex]\( x \to \infty \)[/tex] direction compared to the [tex]\( x \to -\infty \)[/tex] direction.
- If the leading coefficient is positive, as [tex]\( x \to \infty \)[/tex], [tex]\( y \to \infty \)[/tex] and as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].
- If the leading coefficient is negative, as [tex]\( x \to \infty \)[/tex], [tex]\( y \to -\infty \)[/tex] and as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to \infty \)[/tex].
Since we are dealing with the polynomial [tex]\( 10x^9 \)[/tex], it is an odd-degree polynomial (degree 9) with a positive leading coefficient (10).
Thus, the end behavior is:
- As [tex]\( x \to \infty \)[/tex], [tex]\( y \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].
So, the correct choice is:
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].
Thus, the correct end behavior is:
[tex]\[ \text{As } x \to -\infty, y \to -\infty \text{ and as } x \to \infty, y \to \infty. \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.