Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

In a class of students, the following data table summarizes how many students play an instrument or a sport. What is the probability that a student chosen randomly from the class plays a sport?

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
& \begin{tabular}{c}
Plays an \\
instrument
\end{tabular} & \begin{tabular}{c}
Does not play \\
an \\
instrument
\end{tabular} \\
\hline
\begin{tabular}{c}
Plays a \\
sport
\end{tabular} & 6 & 8 \\
\hline
\begin{tabular}{c}
Does not \\
play a \\
sport
\end{tabular} & 13 & 3 \\
\hline
\end{tabular}
\][/tex]

Sagot :

To determine the probability that a randomly chosen student from the class plays a sport, we need to follow these steps:

1. Identify the number of students who play a sport:
- Number of students who play a sport and play an instrument: [tex]\(6\)[/tex]
- Number of students who play a sport and do not play an instrument: [tex]\(8\)[/tex]

Therefore, the total number of students who play a sport is:
[tex]\[ 6 + 8 = 14 \][/tex]

2. Identify the total number of students in the class:
- Number of students who play a sport and play an instrument: [tex]\(6\)[/tex]
- Number of students who play a sport and do not play an instrument: [tex]\(8\)[/tex]
- Number of students who do not play a sport but play an instrument: [tex]\(13\)[/tex]
- Number of students who do not play a sport and do not play an instrument: [tex]\(3\)[/tex]

Therefore, the total number of students in the class is:
[tex]\[ 6 + 8 + 13 + 3 = 30 \][/tex]

3. Calculate the probability that a randomly selected student plays a sport:
The probability is given by the ratio of the number of students who play a sport to the total number of students in the class. So we have:
[tex]\[ \text{Probability} = \frac{\text{Number of students who play a sport}}{\text{Total number of students in the class}} = \frac{14}{30} \][/tex]

4. Simplify the fraction (if needed):
In this case, [tex]\(\frac{14}{30}\)[/tex] can be simplified by dividing both the numerator and the denominator by 2:
[tex]\[ \frac{14}{30} = \frac{14 \div 2}{30 \div 2} = \frac{7}{15} \][/tex]

5. Convert the fraction to a decimal:
To understand the fraction in decimal form, we can perform the division:
[tex]\[ \frac{7}{15} \approx 0.4667 \][/tex]

Therefore, the probability that a randomly chosen student plays a sport is approximately [tex]\(0.4667\)[/tex].

So, the final answer is that the probability that a student chosen randomly from the class plays a sport is [tex]\( \frac{14}{30} = 0.4667 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.