Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To address the problem at hand:
Let's first examine Kylie’s explanation:
[tex]\[ (-4x + 9)^2 = (-4x)^2 + 9^2 = 16x^2 + 81 \][/tex]
This is incorrect. The expression given is a binomial square, not simply the sum of squares. When squaring a binomial [tex]\((a + b)^2\)[/tex], the correct expansion formula is:
[tex]\[ (a + b)^2 = a^2 + 2ab + b^2 \][/tex]
To apply this to the expression [tex]\((-4x + 9)^2\)[/tex], let’s identify:
[tex]\[ a = -4x \quad \text{and} \quad b = 9 \][/tex]
Now, using the binomial expansion formula:
[tex]\[ (-4x + 9)^2 = (-4x)^2 + 2(-4x)(9) + 9^2 \][/tex]
Calculating each term:
[tex]\[ (-4x)^2 = 16x^2 \][/tex]
[tex]\[ 2(-4x)(9) = -72x \][/tex]
[tex]\[ 9^2 = 81 \][/tex]
Combining these, the correct trinomial expansion is:
[tex]\[ 16x^2 - 72x + 81 \][/tex]
Therefore, Kylie did not understand that squaring a binomial results in a perfect square trinomial, which includes the middle term [tex]\(2ab\)[/tex]. She incorrectly thought it was simply the sum of the squares of the individual terms.
Based on this analysis:
[tex]\[ The statement that best describes Kylie's explanation is: \][/tex]
[tex]\[ \boxed{\text{Kylie did not understand that this is a perfect square trinomial, and she did not determine the product correctly.}} \][/tex]
Let's first examine Kylie’s explanation:
[tex]\[ (-4x + 9)^2 = (-4x)^2 + 9^2 = 16x^2 + 81 \][/tex]
This is incorrect. The expression given is a binomial square, not simply the sum of squares. When squaring a binomial [tex]\((a + b)^2\)[/tex], the correct expansion formula is:
[tex]\[ (a + b)^2 = a^2 + 2ab + b^2 \][/tex]
To apply this to the expression [tex]\((-4x + 9)^2\)[/tex], let’s identify:
[tex]\[ a = -4x \quad \text{and} \quad b = 9 \][/tex]
Now, using the binomial expansion formula:
[tex]\[ (-4x + 9)^2 = (-4x)^2 + 2(-4x)(9) + 9^2 \][/tex]
Calculating each term:
[tex]\[ (-4x)^2 = 16x^2 \][/tex]
[tex]\[ 2(-4x)(9) = -72x \][/tex]
[tex]\[ 9^2 = 81 \][/tex]
Combining these, the correct trinomial expansion is:
[tex]\[ 16x^2 - 72x + 81 \][/tex]
Therefore, Kylie did not understand that squaring a binomial results in a perfect square trinomial, which includes the middle term [tex]\(2ab\)[/tex]. She incorrectly thought it was simply the sum of the squares of the individual terms.
Based on this analysis:
[tex]\[ The statement that best describes Kylie's explanation is: \][/tex]
[tex]\[ \boxed{\text{Kylie did not understand that this is a perfect square trinomial, and she did not determine the product correctly.}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.