Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the problem step by step to find the correct answer.
We are given the polynomial expression:
[tex]\[ (2x^2 - 3y^2)(4x^4 + 6x^2y^2 + 9y^4) \][/tex]
Our goal is to expand this expression and match it with one of the given options. To do this, let's distribute each term in the first polynomial by each term in the second polynomial.
1. Start with [tex]\(2x^2\)[/tex] and distribute:
[tex]\[ 2x^2 \cdot 4x^4 = 8x^6 \][/tex]
[tex]\[ 2x^2 \cdot 6x^2y^2 = 12x^4y^2 \][/tex]
[tex]\[ 2x^2 \cdot 9y^4 = 18x^2y^4 \][/tex]
2. Now distribute [tex]\(-3y^2\)[/tex]:
[tex]\[ -3y^2 \cdot 4x^4 = -12x^4y^2 \][/tex]
[tex]\[ -3y^2 \cdot 6x^2y^2 = -18x^2y^4 \][/tex]
[tex]\[ -3y^2 \cdot 9y^4 = -27y^6 \][/tex]
3. Now, let's combine all the terms obtained:
[tex]\[ 8x^6 + 12x^4y^2 + 18x^2y^4 - 12x^4y^2 - 18x^2y^4 - 27y^6 \][/tex]
4. Simplify the expression by combining like terms:
[tex]\[ 8x^6 + (12x^4y^2 - 12x^4y^2) + (18x^2y^4 - 18x^2y^4) - 27y^6 \][/tex]
All intermediate terms cancel out:
[tex]\[ 8x^6 - 27y^6 \][/tex]
Thus, the expanded expression is:
[tex]\[ 8x^6 - 27y^6 \][/tex]
This matches option D:
[tex]\[ \boxed{8x^6 - 27y^6} \][/tex]
Therefore, the correct answer is option D.
We are given the polynomial expression:
[tex]\[ (2x^2 - 3y^2)(4x^4 + 6x^2y^2 + 9y^4) \][/tex]
Our goal is to expand this expression and match it with one of the given options. To do this, let's distribute each term in the first polynomial by each term in the second polynomial.
1. Start with [tex]\(2x^2\)[/tex] and distribute:
[tex]\[ 2x^2 \cdot 4x^4 = 8x^6 \][/tex]
[tex]\[ 2x^2 \cdot 6x^2y^2 = 12x^4y^2 \][/tex]
[tex]\[ 2x^2 \cdot 9y^4 = 18x^2y^4 \][/tex]
2. Now distribute [tex]\(-3y^2\)[/tex]:
[tex]\[ -3y^2 \cdot 4x^4 = -12x^4y^2 \][/tex]
[tex]\[ -3y^2 \cdot 6x^2y^2 = -18x^2y^4 \][/tex]
[tex]\[ -3y^2 \cdot 9y^4 = -27y^6 \][/tex]
3. Now, let's combine all the terms obtained:
[tex]\[ 8x^6 + 12x^4y^2 + 18x^2y^4 - 12x^4y^2 - 18x^2y^4 - 27y^6 \][/tex]
4. Simplify the expression by combining like terms:
[tex]\[ 8x^6 + (12x^4y^2 - 12x^4y^2) + (18x^2y^4 - 18x^2y^4) - 27y^6 \][/tex]
All intermediate terms cancel out:
[tex]\[ 8x^6 - 27y^6 \][/tex]
Thus, the expanded expression is:
[tex]\[ 8x^6 - 27y^6 \][/tex]
This matches option D:
[tex]\[ \boxed{8x^6 - 27y^6} \][/tex]
Therefore, the correct answer is option D.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.