Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the midpoint of a line segment given its endpoints, we can use the midpoint formula:
[tex]\[ \text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, the endpoints of the segment [tex]\(\overline{GH}\)[/tex] are [tex]\(G (14,3)\)[/tex] and [tex]\(H(10,-6)\)[/tex]. Let's label the coordinates of [tex]\(G\)[/tex] and [tex]\(H\)[/tex] as follows:
- [tex]\(G_x = 14\)[/tex]
- [tex]\(G_y = 3\)[/tex]
- [tex]\(H_x = 10\)[/tex]
- [tex]\(H_y = -6\)[/tex]
Now, we will apply the midpoint formula to these coordinates:
1. Calculate the [tex]\(x\)[/tex]-coordinate of the midpoint:
[tex]\[ \frac{G_x + H_x}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]
2. Calculate the [tex]\(y\)[/tex]-coordinate of the midpoint:
[tex]\[ \frac{G_y + H_y}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5 \][/tex]
Therefore, the coordinates of the midpoint of [tex]\(\overline{GH}\)[/tex] are [tex]\( (12, -1.5) \)[/tex].
Thus, the correct answer is:
C. [tex]\(\left(12, -\frac{3}{2}\right)\)[/tex]
[tex]\[ \text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, the endpoints of the segment [tex]\(\overline{GH}\)[/tex] are [tex]\(G (14,3)\)[/tex] and [tex]\(H(10,-6)\)[/tex]. Let's label the coordinates of [tex]\(G\)[/tex] and [tex]\(H\)[/tex] as follows:
- [tex]\(G_x = 14\)[/tex]
- [tex]\(G_y = 3\)[/tex]
- [tex]\(H_x = 10\)[/tex]
- [tex]\(H_y = -6\)[/tex]
Now, we will apply the midpoint formula to these coordinates:
1. Calculate the [tex]\(x\)[/tex]-coordinate of the midpoint:
[tex]\[ \frac{G_x + H_x}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]
2. Calculate the [tex]\(y\)[/tex]-coordinate of the midpoint:
[tex]\[ \frac{G_y + H_y}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5 \][/tex]
Therefore, the coordinates of the midpoint of [tex]\(\overline{GH}\)[/tex] are [tex]\( (12, -1.5) \)[/tex].
Thus, the correct answer is:
C. [tex]\(\left(12, -\frac{3}{2}\right)\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.