Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the coordinates of the point that is [tex]\(\frac{3}{8}\)[/tex] of the way from point [tex]\(A(-8, -9)\)[/tex] to point [tex]\(B(24, -1)\)[/tex], we can use the section formula for dividing a line segment in a given ratio.
The section formula states that the coordinates of a point dividing the line segment joining [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex] are given by:
[tex]\[ \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \][/tex]
Here, [tex]\(A(x_1, y_1) = (-8, -9)\)[/tex] and [tex]\(B(x_2, y_2) = (24, -1)\)[/tex], and the ratio [tex]\(m:n = \frac{3}{8}\)[/tex] implies [tex]\(m = 3\)[/tex] and [tex]\(n = 8 - 3 = 5\)[/tex].
Let's find the x-coordinate of the new point.
[tex]\[ x_{new} = \frac{m \cdot x_2 + n \cdot x_1}{m + n} = \frac{3 \cdot 24 + 5 \cdot (-8)}{3+5} = \frac{72 - 40}{8} = \frac{32}{8} = 4 \][/tex]
Next, let's find the y-coordinate of the new point.
[tex]\[ y_{new} = \frac{m \cdot y_2 + n \cdot y_1}{m + n} = \frac{3 \cdot (-1) + 5 \cdot (-9)}{3+5} = \frac{-3 - 45}{8} = \frac{-48}{8} = -6 \][/tex]
Therefore, the coordinates of the point that is [tex]\(\frac{3}{8}\)[/tex] of the way from [tex]\(A(-8, -9)\)[/tex] to [tex]\(B(24, -1)\)[/tex] are [tex]\((4, -6)\)[/tex].
So, the correct answer is:
B. [tex]\( (4, -6) \)[/tex]
The section formula states that the coordinates of a point dividing the line segment joining [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex] are given by:
[tex]\[ \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \][/tex]
Here, [tex]\(A(x_1, y_1) = (-8, -9)\)[/tex] and [tex]\(B(x_2, y_2) = (24, -1)\)[/tex], and the ratio [tex]\(m:n = \frac{3}{8}\)[/tex] implies [tex]\(m = 3\)[/tex] and [tex]\(n = 8 - 3 = 5\)[/tex].
Let's find the x-coordinate of the new point.
[tex]\[ x_{new} = \frac{m \cdot x_2 + n \cdot x_1}{m + n} = \frac{3 \cdot 24 + 5 \cdot (-8)}{3+5} = \frac{72 - 40}{8} = \frac{32}{8} = 4 \][/tex]
Next, let's find the y-coordinate of the new point.
[tex]\[ y_{new} = \frac{m \cdot y_2 + n \cdot y_1}{m + n} = \frac{3 \cdot (-1) + 5 \cdot (-9)}{3+5} = \frac{-3 - 45}{8} = \frac{-48}{8} = -6 \][/tex]
Therefore, the coordinates of the point that is [tex]\(\frac{3}{8}\)[/tex] of the way from [tex]\(A(-8, -9)\)[/tex] to [tex]\(B(24, -1)\)[/tex] are [tex]\((4, -6)\)[/tex].
So, the correct answer is:
B. [tex]\( (4, -6) \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.