Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for the value of [tex]\( x \)[/tex] where [tex]\( x = \cos^{-1}\left(\frac{4.3}{6.7}\right) \)[/tex], we need to understand the process involved in finding the angle using the inverse cosine function. Let's go through it step-by-step:
1. Identify the Given Values:
- We are given the ratio [tex]\(\frac{4.3}{6.7}\)[/tex].
2. Understanding [tex]\(\cos^{-1}\)[/tex] Function:
- The inverse cosine function, [tex]\(\cos^{-1}(y)\)[/tex], gives us the angle whose cosine is [tex]\( y \)[/tex].
- In this case, [tex]\(\cos x = \frac{4.3}{6.7}\)[/tex].
3. Calculation of [tex]\(\frac{4.3}{6.7}\)[/tex]:
- We simplify the fraction first.
- [tex]\(\frac{4.3}{6.7} \approx 0.641791\)[/tex].
4. Apply the Inverse Cosine Function:
- Find [tex]\( x \)[/tex] such that [tex]\( x = \cos^{-1}(0.641791) \)[/tex].
5. Calculate the Angle:
- Using a calculator, we find [tex]\( x \approx 0.8739648401891128 \)[/tex] radians.
6. Convert Radians to Degrees (if needed):
- To convert from radians to degrees, we use the formula: [tex]\(\text{degrees} = \text{radians} \times \frac{180}{\pi}\)[/tex].
- Hence, [tex]\( x_{\text{degrees}} = 0.8739648401891128 \times \frac{180}{\pi} \approx 50.07449678566164 \)[/tex] degrees.
Thus, the angle [tex]\( x \)[/tex] in radians is [tex]\( 0.8739648401891128 \)[/tex] and in degrees is [tex]\( 50.07449678566164 \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] in the triangle, where [tex]\( \cos x = \frac{4.3}{6.7} \)[/tex], is [tex]\( 0.8739648401891128 \)[/tex] radians or [tex]\( 50.07449678566164 \)[/tex] degrees.
1. Identify the Given Values:
- We are given the ratio [tex]\(\frac{4.3}{6.7}\)[/tex].
2. Understanding [tex]\(\cos^{-1}\)[/tex] Function:
- The inverse cosine function, [tex]\(\cos^{-1}(y)\)[/tex], gives us the angle whose cosine is [tex]\( y \)[/tex].
- In this case, [tex]\(\cos x = \frac{4.3}{6.7}\)[/tex].
3. Calculation of [tex]\(\frac{4.3}{6.7}\)[/tex]:
- We simplify the fraction first.
- [tex]\(\frac{4.3}{6.7} \approx 0.641791\)[/tex].
4. Apply the Inverse Cosine Function:
- Find [tex]\( x \)[/tex] such that [tex]\( x = \cos^{-1}(0.641791) \)[/tex].
5. Calculate the Angle:
- Using a calculator, we find [tex]\( x \approx 0.8739648401891128 \)[/tex] radians.
6. Convert Radians to Degrees (if needed):
- To convert from radians to degrees, we use the formula: [tex]\(\text{degrees} = \text{radians} \times \frac{180}{\pi}\)[/tex].
- Hence, [tex]\( x_{\text{degrees}} = 0.8739648401891128 \times \frac{180}{\pi} \approx 50.07449678566164 \)[/tex] degrees.
Thus, the angle [tex]\( x \)[/tex] in radians is [tex]\( 0.8739648401891128 \)[/tex] and in degrees is [tex]\( 50.07449678566164 \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] in the triangle, where [tex]\( \cos x = \frac{4.3}{6.7} \)[/tex], is [tex]\( 0.8739648401891128 \)[/tex] radians or [tex]\( 50.07449678566164 \)[/tex] degrees.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.