At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the value of [tex]\( x \)[/tex] where [tex]\( x = \cos^{-1}\left(\frac{4.3}{6.7}\right) \)[/tex], we need to understand the process involved in finding the angle using the inverse cosine function. Let's go through it step-by-step:
1. Identify the Given Values:
- We are given the ratio [tex]\(\frac{4.3}{6.7}\)[/tex].
2. Understanding [tex]\(\cos^{-1}\)[/tex] Function:
- The inverse cosine function, [tex]\(\cos^{-1}(y)\)[/tex], gives us the angle whose cosine is [tex]\( y \)[/tex].
- In this case, [tex]\(\cos x = \frac{4.3}{6.7}\)[/tex].
3. Calculation of [tex]\(\frac{4.3}{6.7}\)[/tex]:
- We simplify the fraction first.
- [tex]\(\frac{4.3}{6.7} \approx 0.641791\)[/tex].
4. Apply the Inverse Cosine Function:
- Find [tex]\( x \)[/tex] such that [tex]\( x = \cos^{-1}(0.641791) \)[/tex].
5. Calculate the Angle:
- Using a calculator, we find [tex]\( x \approx 0.8739648401891128 \)[/tex] radians.
6. Convert Radians to Degrees (if needed):
- To convert from radians to degrees, we use the formula: [tex]\(\text{degrees} = \text{radians} \times \frac{180}{\pi}\)[/tex].
- Hence, [tex]\( x_{\text{degrees}} = 0.8739648401891128 \times \frac{180}{\pi} \approx 50.07449678566164 \)[/tex] degrees.
Thus, the angle [tex]\( x \)[/tex] in radians is [tex]\( 0.8739648401891128 \)[/tex] and in degrees is [tex]\( 50.07449678566164 \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] in the triangle, where [tex]\( \cos x = \frac{4.3}{6.7} \)[/tex], is [tex]\( 0.8739648401891128 \)[/tex] radians or [tex]\( 50.07449678566164 \)[/tex] degrees.
1. Identify the Given Values:
- We are given the ratio [tex]\(\frac{4.3}{6.7}\)[/tex].
2. Understanding [tex]\(\cos^{-1}\)[/tex] Function:
- The inverse cosine function, [tex]\(\cos^{-1}(y)\)[/tex], gives us the angle whose cosine is [tex]\( y \)[/tex].
- In this case, [tex]\(\cos x = \frac{4.3}{6.7}\)[/tex].
3. Calculation of [tex]\(\frac{4.3}{6.7}\)[/tex]:
- We simplify the fraction first.
- [tex]\(\frac{4.3}{6.7} \approx 0.641791\)[/tex].
4. Apply the Inverse Cosine Function:
- Find [tex]\( x \)[/tex] such that [tex]\( x = \cos^{-1}(0.641791) \)[/tex].
5. Calculate the Angle:
- Using a calculator, we find [tex]\( x \approx 0.8739648401891128 \)[/tex] radians.
6. Convert Radians to Degrees (if needed):
- To convert from radians to degrees, we use the formula: [tex]\(\text{degrees} = \text{radians} \times \frac{180}{\pi}\)[/tex].
- Hence, [tex]\( x_{\text{degrees}} = 0.8739648401891128 \times \frac{180}{\pi} \approx 50.07449678566164 \)[/tex] degrees.
Thus, the angle [tex]\( x \)[/tex] in radians is [tex]\( 0.8739648401891128 \)[/tex] and in degrees is [tex]\( 50.07449678566164 \)[/tex].
Therefore, the value of [tex]\( x \)[/tex] in the triangle, where [tex]\( \cos x = \frac{4.3}{6.7} \)[/tex], is [tex]\( 0.8739648401891128 \)[/tex] radians or [tex]\( 50.07449678566164 \)[/tex] degrees.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.