Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the oblique asymptote of the function [tex]\( g(x) = \frac{x^2 - 3x - 5}{x + 2} \)[/tex], we need to perform polynomial long division.
Step-by-Step Solution:
1. Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
2. Multiply the entire divisor [tex]\((x+2)\)[/tex] by [tex]\(x\)[/tex] and subtract this from the original numerator [tex]\((x^2 - 3x - 5)\)[/tex]:
[tex]\[ (x^2 - 3x - 5) - (x \cdot (x + 2)) = (x^2 - 3x - 5) - (x^2 + 2x) \][/tex]
Simplify this:
[tex]\[ (x^2 - 3x - 5) - (x^2 + 2x) = -5x - 5 \][/tex]
3. Divide the next term of the result (-5x) by the leading term of the divisor (x):
[tex]\[ \frac{-5x}{x} = -5 \][/tex]
4. Multiply the entire divisor [tex]\((x + 2)\)[/tex] by [tex]\(-5\)[/tex] and subtract:
[tex]\[ (-5x - 5) - (-5 \cdot (x + 2)) = (-5x - 5) - (-5x - 10) \][/tex]
Simplify this:
[tex]\[ (-5x - 5) - (-5x - 10) = 5 \][/tex]
Our quotient from the division process is [tex]\(x - 5\)[/tex] and the remainder is [tex]\(5\)[/tex].
Since we are only interested in the oblique asymptote (ignoring the remainder as [tex]\(x \to \infty\)[/tex]), we identify the oblique asymptote by the quotient we obtained:
[tex]\[ y = x - 5 \][/tex]
Therefore, the oblique asymptote of [tex]\( g(x) = \frac{x^2 - 3x - 5}{x + 2} \)[/tex] is:
[tex]\( y = x - 5 \)[/tex]
From the given choices, the correct answer is [tex]\( y = x - 5 \)[/tex].
Step-by-Step Solution:
1. Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
2. Multiply the entire divisor [tex]\((x+2)\)[/tex] by [tex]\(x\)[/tex] and subtract this from the original numerator [tex]\((x^2 - 3x - 5)\)[/tex]:
[tex]\[ (x^2 - 3x - 5) - (x \cdot (x + 2)) = (x^2 - 3x - 5) - (x^2 + 2x) \][/tex]
Simplify this:
[tex]\[ (x^2 - 3x - 5) - (x^2 + 2x) = -5x - 5 \][/tex]
3. Divide the next term of the result (-5x) by the leading term of the divisor (x):
[tex]\[ \frac{-5x}{x} = -5 \][/tex]
4. Multiply the entire divisor [tex]\((x + 2)\)[/tex] by [tex]\(-5\)[/tex] and subtract:
[tex]\[ (-5x - 5) - (-5 \cdot (x + 2)) = (-5x - 5) - (-5x - 10) \][/tex]
Simplify this:
[tex]\[ (-5x - 5) - (-5x - 10) = 5 \][/tex]
Our quotient from the division process is [tex]\(x - 5\)[/tex] and the remainder is [tex]\(5\)[/tex].
Since we are only interested in the oblique asymptote (ignoring the remainder as [tex]\(x \to \infty\)[/tex]), we identify the oblique asymptote by the quotient we obtained:
[tex]\[ y = x - 5 \][/tex]
Therefore, the oblique asymptote of [tex]\( g(x) = \frac{x^2 - 3x - 5}{x + 2} \)[/tex] is:
[tex]\( y = x - 5 \)[/tex]
From the given choices, the correct answer is [tex]\( y = x - 5 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.