Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Determine the domain of the function

[tex]\[ f(x)=\frac{x^2+6x+5}{x^2-25} \][/tex]

A. [tex]\((-1,5)\)[/tex]

B. [tex]\((5,5)\)[/tex]

C. [tex]\((-\infty,-1) \cup (-1,5) \cup (5, \infty)\)[/tex]

D. [tex]\((-\infty,-5) \cup (-5,5) \cup (5, \infty)\)[/tex]


Sagot :

To determine the domain of the function [tex]\( f(x) = \frac{x^2 + 6x + 5}{x^2 - 25} \)[/tex], we need to find the values of [tex]\( x \)[/tex] for which the function is defined. For a rational function like this, the function is undefined where the denominator is zero because division by zero is undefined.

1. Find where the denominator is zero:

We need to solve the equation:
[tex]\[ x^2 - 25 = 0 \][/tex]

To solve this, we recognize that it is a difference of squares:
[tex]\[ x^2 - 25 = (x - 5)(x + 5) = 0 \][/tex]

This equation is satisfied when:
[tex]\[ x - 5 = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]

Hence,
[tex]\[ x = 5 \quad \text{or} \quad x = -5 \][/tex]

2. Define the domain:

The function [tex]\( f(x) \)[/tex] will be undefined at [tex]\( x = 5 \)[/tex] and [tex]\( x = -5 \)[/tex]. Thus, we need to exclude these points from the domain.

The domain will include all real numbers except [tex]\( x = 5 \)[/tex] and [tex]\( x = -5 \)[/tex]. So, in interval notation, the domain is:
[tex]\[ (-\infty, -5) \cup (-5, 5) \cup (5, \infty) \][/tex]

3. Compare with the provided choices:

Given the options, the one that corresponds to this interval notation is:
[tex]\[ (-\infty,-5) \cup (-5,5) \cup (5, \infty) \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{(-\infty, -5) \cup (-5, 5) \cup (5, \infty)} \][/tex]