Answered

Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

If the sum of the first three terms of an A.P. is 48 and that of the first five terms is 110, find the [tex]15^{\text{th}}[/tex] term and the sum of the first 15 terms.

Sagot :

To solve for the [tex]\(15^{\text{th}}\)[/tex] term and the sum of the first 15 terms of an arithmetic progression (A.P.), we start with the information provided:

1. The sum of the first 3 terms of an A.P. is 48.
2. The sum of the first 5 terms of an A.P. is 110.

We denote the first term of the A.P. as [tex]\(a\)[/tex] and the common difference as [tex]\(d\)[/tex].

### Step 1: Express the given sums in terms of [tex]\(a\)[/tex] and [tex]\(d\)[/tex].

The sum of the first [tex]\(n\)[/tex] terms [tex]\(S_n\)[/tex] of an A.P. is given by:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]

#### For the first 3 terms ([tex]\(n=3\)[/tex]):
[tex]\[ S_3 = \frac{3}{2} [2a + 2d] = 48 \][/tex]
[tex]\[ \frac{3}{2} (2a + 2d) = 48 \][/tex]
[tex]\[ 3(a + d) = 48 \][/tex]
[tex]\[ a + d = 16 \quad \text{(Equation 1)} \][/tex]

#### For the first 5 terms ([tex]\(n=5\)[/tex]):
[tex]\[ S_5 = \frac{5}{2} [2a + 4d] = 110 \][/tex]
[tex]\[ \frac{5}{2} (2a + 4d) = 110 \][/tex]
[tex]\[ 5(a + 2d) = 110 \][/tex]
[tex]\[ a + 2d = 22 \quad \text{(Equation 2)} \][/tex]

### Step 2: Solve the system of linear equations.

We now have the following system of equations:
[tex]\[ a + d = 16 \quad \text{(Equation 1)} \][/tex]
[tex]\[ a + 2d = 22 \quad \text{(Equation 2)} \][/tex]

Subtract Equation 1 from Equation 2:
[tex]\[ (a + 2d) - (a + d) = 22 - 16 \][/tex]
[tex]\[ d = 6 \][/tex]

Substitute [tex]\(d = 6\)[/tex] back into Equation 1:
[tex]\[ a + 6 = 16 \][/tex]
[tex]\[ a = 10 \][/tex]

### Step 3: Find the [tex]\(15^{\text{th}}\)[/tex] term.

The [tex]\(n^{\text{th}}\)[/tex] term of an A.P. is given by:
[tex]\[ a_n = a + (n-1)d \][/tex]

For the [tex]\(15^{\text{th}}\)[/tex] term ([tex]\(n=15\)[/tex]):
[tex]\[ a_{15} = 10 + (15-1) \cdot 6 \][/tex]
[tex]\[ a_{15} = 10 + 14 \cdot 6 \][/tex]
[tex]\[ a_{15} = 10 + 84 \][/tex]
[tex]\[ a_{15} = 94 \][/tex]

### Step 4: Find the sum of the first 15 terms.

The sum of the first [tex]\(n\)[/tex] terms ([tex]\(S_n\)[/tex]) is given by:
[tex]\[ S_n = \frac{n}{2} [2a + (n-1)d] \][/tex]

For [tex]\(n = 15\)[/tex]:
[tex]\[ S_{15} = \frac{15}{2} [2 \cdot 10 + 14 \cdot 6] \][/tex]
[tex]\[ S_{15} = \frac{15}{2} [20 + 84] \][/tex]
[tex]\[ S_{15} = \frac{15}{2} \cdot 104 \][/tex]
[tex]\[ S_{15} = 15 \cdot 52 \][/tex]
[tex]\[ S_{15} = 780 \][/tex]

### Final Answer

The [tex]\(15^{\text{th}}\)[/tex] term of the A.P. is [tex]\(94\)[/tex].

The sum of the first 15 terms of the A.P. is [tex]\(780\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.