At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze the given problem step by step.
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in a Cartesian plane is given by the Euclidean distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
For the specific points in the question:
- [tex]\((x_1, y_1)\)[/tex] is a general point.
- [tex]\((3, 7)\)[/tex] is a specific point.
Substituting these points into the distance formula, we get:
[tex]\[ d = \sqrt{(x_1 - 3)^2 + (y_1 - 7)^2} \][/tex]
This matches exactly with what is given in the problem statement:
"The distance between points [tex]\((3, 7)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] is the square root of [tex]\((x_1 - 3)^2 + (y_1 - 7)^2\)[/tex]."
Since the Euclidean distance formula is correctly described by the given statement, the answer is:
A. True
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in a Cartesian plane is given by the Euclidean distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
For the specific points in the question:
- [tex]\((x_1, y_1)\)[/tex] is a general point.
- [tex]\((3, 7)\)[/tex] is a specific point.
Substituting these points into the distance formula, we get:
[tex]\[ d = \sqrt{(x_1 - 3)^2 + (y_1 - 7)^2} \][/tex]
This matches exactly with what is given in the problem statement:
"The distance between points [tex]\((3, 7)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] is the square root of [tex]\((x_1 - 3)^2 + (y_1 - 7)^2\)[/tex]."
Since the Euclidean distance formula is correctly described by the given statement, the answer is:
A. True
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.