Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the value of [tex]$b^2 - 4ac$[/tex] for the following equation?

[tex]\[ 2x^2 + 3x = -1 \][/tex]

A. 0
B. 1
C. 17


Sagot :

To find the value of [tex]\( b^2 - 4ac \)[/tex] for the given quadratic equation [tex]\( 2x^2 + 3x = -1 \)[/tex], follow these steps:

1. Rewrite the equation in standard form:
The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. So we need to bring all terms to one side of the equation.
[tex]\[ 2x^2 + 3x + 1 = 0 \][/tex]

2. Identify the coefficients:
From the standard form equation [tex]\( 2x^2 + 3x + 1 = 0 \)[/tex]:
[tex]\[ a = 2, \quad b = 3, \quad c = 1 \][/tex]

3. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by [tex]\( b^2 - 4ac \)[/tex].

Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ b^2 - 4ac = 3^2 - 4 \cdot 2 \cdot 1 \][/tex]

4. Perform the arithmetic operations:
[tex]\[ b^2 - 4ac = 9 - 8 = 1 \][/tex]

Hence, the value of [tex]\( b^2 - 4ac \)[/tex] for the equation [tex]\( 2x^2 + 3x = -1 \)[/tex] is [tex]\( 1 \)[/tex].

So, the correct answer is:
[tex]\[ 1 \][/tex]