Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's convert both quadratic functions from their vertex form to standard form step by step and identify the [tex]\( y \)[/tex]-intercept.
### Problem 4: [tex]\( y = 5(x-2)^2 + 7 \)[/tex]
1. Start with the vertex form:
[tex]\[ y = 5(x-2)^2 + 7 \][/tex]
2. Expand the square:
[tex]\[ (x-2)^2 = x^2 - 4x + 4 \][/tex]
3. Distribute the coefficient [tex]\( a = 5 \)[/tex] through the expanded binomial:
[tex]\[ y = 5(x^2 - 4x + 4) + 7 \][/tex]
[tex]\[ y = 5x^2 - 20x + 20 + 7 \][/tex]
4. Combine like terms:
[tex]\[ y = 5x^2 - 20x + 27 \][/tex]
So, in standard form, the quadratic function is:
[tex]\[ y = 5x^2 - 20x + 27 \][/tex]
5. Identify the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 5(0)^2 - 20(0) + 27 = 27 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 27) \)[/tex].
### Problem 5: [tex]\( y = 3(x+1)^2 + 12 \)[/tex]
1. Start with the vertex form:
[tex]\[ y = 3(x+1)^2 + 12 \][/tex]
2. Expand the square:
[tex]\[ (x+1)^2 = x^2 + 2x + 1 \][/tex]
3. Distribute the coefficient [tex]\( a = 3 \)[/tex] through the expanded binomial:
[tex]\[ y = 3(x^2 + 2x + 1) + 12 \][/tex]
[tex]\[ y = 3x^2 + 6x + 3 + 12 \][/tex]
4. Combine like terms:
[tex]\[ y = 3x^2 + 6x + 15 \][/tex]
So, in standard form, the quadratic function is:
[tex]\[ y = 3x^2 + 6x + 15 \][/tex]
5. Identify the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 3(0)^2 + 6(0) + 15 = 15 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 15) \)[/tex].
### Summary of Functions and [tex]\( y \)[/tex]-Intercepts
1. [tex]\( y = 5x^2 - 20x + 27 \)[/tex] with [tex]\( y \)[/tex]-intercept [tex]\( (0, 27) \)[/tex].
2. [tex]\( y = 3x^2 + 6x + 15 \)[/tex] with [tex]\( y \)[/tex]-intercept [tex]\( (0, 15) \)[/tex].
### Graphing the Functions
To graph these functions:
1. Plot the [tex]\( y \)[/tex]-intercepts:
- For [tex]\( y = 5x^2 - 20x + 27 \)[/tex], plot the point [tex]\( (0, 27) \)[/tex].
- For [tex]\( y = 3x^2 + 6x + 15 \)[/tex], plot the point [tex]\( (0, 15) \)[/tex].
2. Plot the vertices and additional points to shape the parabolas:
- For [tex]\( y = 5(x - 2)^2 + 7 \)[/tex], the vertex is [tex]\( (2, 7) \)[/tex].
- For [tex]\( y = 3(x + 1)^2 + 12 \)[/tex], the vertex is [tex]\( (-1, 12) \)[/tex].
3. Draw smooth parabolas through these points:
- Both functions open upwards since the coefficients of [tex]\( x^2 \)[/tex] (5 and 3) are positive.
- The parabolas are symmetric about their respective vertices.
By following these steps, you can accurately graph the quadratic functions based on their standard forms and [tex]\( y \)[/tex]-intercepts.
### Problem 4: [tex]\( y = 5(x-2)^2 + 7 \)[/tex]
1. Start with the vertex form:
[tex]\[ y = 5(x-2)^2 + 7 \][/tex]
2. Expand the square:
[tex]\[ (x-2)^2 = x^2 - 4x + 4 \][/tex]
3. Distribute the coefficient [tex]\( a = 5 \)[/tex] through the expanded binomial:
[tex]\[ y = 5(x^2 - 4x + 4) + 7 \][/tex]
[tex]\[ y = 5x^2 - 20x + 20 + 7 \][/tex]
4. Combine like terms:
[tex]\[ y = 5x^2 - 20x + 27 \][/tex]
So, in standard form, the quadratic function is:
[tex]\[ y = 5x^2 - 20x + 27 \][/tex]
5. Identify the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 5(0)^2 - 20(0) + 27 = 27 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 27) \)[/tex].
### Problem 5: [tex]\( y = 3(x+1)^2 + 12 \)[/tex]
1. Start with the vertex form:
[tex]\[ y = 3(x+1)^2 + 12 \][/tex]
2. Expand the square:
[tex]\[ (x+1)^2 = x^2 + 2x + 1 \][/tex]
3. Distribute the coefficient [tex]\( a = 3 \)[/tex] through the expanded binomial:
[tex]\[ y = 3(x^2 + 2x + 1) + 12 \][/tex]
[tex]\[ y = 3x^2 + 6x + 3 + 12 \][/tex]
4. Combine like terms:
[tex]\[ y = 3x^2 + 6x + 15 \][/tex]
So, in standard form, the quadratic function is:
[tex]\[ y = 3x^2 + 6x + 15 \][/tex]
5. Identify the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 3(0)^2 + 6(0) + 15 = 15 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 15) \)[/tex].
### Summary of Functions and [tex]\( y \)[/tex]-Intercepts
1. [tex]\( y = 5x^2 - 20x + 27 \)[/tex] with [tex]\( y \)[/tex]-intercept [tex]\( (0, 27) \)[/tex].
2. [tex]\( y = 3x^2 + 6x + 15 \)[/tex] with [tex]\( y \)[/tex]-intercept [tex]\( (0, 15) \)[/tex].
### Graphing the Functions
To graph these functions:
1. Plot the [tex]\( y \)[/tex]-intercepts:
- For [tex]\( y = 5x^2 - 20x + 27 \)[/tex], plot the point [tex]\( (0, 27) \)[/tex].
- For [tex]\( y = 3x^2 + 6x + 15 \)[/tex], plot the point [tex]\( (0, 15) \)[/tex].
2. Plot the vertices and additional points to shape the parabolas:
- For [tex]\( y = 5(x - 2)^2 + 7 \)[/tex], the vertex is [tex]\( (2, 7) \)[/tex].
- For [tex]\( y = 3(x + 1)^2 + 12 \)[/tex], the vertex is [tex]\( (-1, 12) \)[/tex].
3. Draw smooth parabolas through these points:
- Both functions open upwards since the coefficients of [tex]\( x^2 \)[/tex] (5 and 3) are positive.
- The parabolas are symmetric about their respective vertices.
By following these steps, you can accurately graph the quadratic functions based on their standard forms and [tex]\( y \)[/tex]-intercepts.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.