Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To draw the angle [tex]\(\frac{23 \pi}{8}\)[/tex] on the unit circle, we'll consider the following steps:
### Step-by-Step Solution:
1. Understanding the Angle in Radians:
The angle given is [tex]\(\frac{23 \pi}{8}\)[/tex]. This angle is in radians.
2. Convert the Angle to Degrees:
To convert the angle from radians to degrees, we use the conversion factor [tex]\(\frac{180^\circ}{\pi}\)[/tex]:
[tex]\[ \frac{23 \pi}{8} \times \frac{180^\circ}{\pi} = \frac{23 \times 180^\circ}{8} = 517.5^\circ \][/tex]
3. Normalize the Angle:
Since the angles on the unit circle are usually considered within the range of [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex], we need to find the equivalent angle within this range. To do this, we subtract [tex]\(360^\circ\)[/tex] until the angle falls into this range:
[tex]\[ 517.5^\circ - 360^\circ = 157.5^\circ \][/tex]
So, [tex]\(\frac{23 \pi}{8}\)[/tex] radians corresponds to an angle of [tex]\(157.5^\circ\)[/tex].
4. Draw the Angle:
To draw [tex]\(157.5^\circ\)[/tex] on the unit circle:
- Start from the positive x-axis.
- Rotate counterclockwise through [tex]\(157.5^\circ\)[/tex].
[tex]\(157.5^\circ\)[/tex] is located in the second quadrant.
5. Determine Coordinates on the Unit Circle:
The coordinates of an angle [tex]\(\theta\)[/tex] on the unit circle are [tex]\((\cos \theta, \sin \theta)\)[/tex]. For [tex]\(\theta = \frac{23 \pi}{8}\)[/tex]:
- Calculate Cosine:
[tex]\[ \cos(\frac{23 \pi}{8}) = -0.9238795325112864 \][/tex]
- Calculate Sine:
[tex]\[ \sin(\frac{23 \pi}{8}) = 0.3826834323650905 \][/tex]
6. Plot the Point:
The point corresponding to [tex]\(\frac{23 \pi}{8}\)[/tex] radians on the unit circle is [tex]\((-0.9238795325112864, 0.3826834323650905)\)[/tex].
Thus, the point [tex]\((-0.9238795325112864, 0.3826834323650905)\)[/tex] lies on the unit circle at an angle of [tex]\(\frac{23 \pi}{8}\)[/tex] radians, which corresponds to [tex]\(157.5^\circ\)[/tex] counterclockwise from the positive x-axis.
### Step-by-Step Solution:
1. Understanding the Angle in Radians:
The angle given is [tex]\(\frac{23 \pi}{8}\)[/tex]. This angle is in radians.
2. Convert the Angle to Degrees:
To convert the angle from radians to degrees, we use the conversion factor [tex]\(\frac{180^\circ}{\pi}\)[/tex]:
[tex]\[ \frac{23 \pi}{8} \times \frac{180^\circ}{\pi} = \frac{23 \times 180^\circ}{8} = 517.5^\circ \][/tex]
3. Normalize the Angle:
Since the angles on the unit circle are usually considered within the range of [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex], we need to find the equivalent angle within this range. To do this, we subtract [tex]\(360^\circ\)[/tex] until the angle falls into this range:
[tex]\[ 517.5^\circ - 360^\circ = 157.5^\circ \][/tex]
So, [tex]\(\frac{23 \pi}{8}\)[/tex] radians corresponds to an angle of [tex]\(157.5^\circ\)[/tex].
4. Draw the Angle:
To draw [tex]\(157.5^\circ\)[/tex] on the unit circle:
- Start from the positive x-axis.
- Rotate counterclockwise through [tex]\(157.5^\circ\)[/tex].
[tex]\(157.5^\circ\)[/tex] is located in the second quadrant.
5. Determine Coordinates on the Unit Circle:
The coordinates of an angle [tex]\(\theta\)[/tex] on the unit circle are [tex]\((\cos \theta, \sin \theta)\)[/tex]. For [tex]\(\theta = \frac{23 \pi}{8}\)[/tex]:
- Calculate Cosine:
[tex]\[ \cos(\frac{23 \pi}{8}) = -0.9238795325112864 \][/tex]
- Calculate Sine:
[tex]\[ \sin(\frac{23 \pi}{8}) = 0.3826834323650905 \][/tex]
6. Plot the Point:
The point corresponding to [tex]\(\frac{23 \pi}{8}\)[/tex] radians on the unit circle is [tex]\((-0.9238795325112864, 0.3826834323650905)\)[/tex].
Thus, the point [tex]\((-0.9238795325112864, 0.3826834323650905)\)[/tex] lies on the unit circle at an angle of [tex]\(\frac{23 \pi}{8}\)[/tex] radians, which corresponds to [tex]\(157.5^\circ\)[/tex] counterclockwise from the positive x-axis.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.