Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine where the graph of the function [tex]\( f(x)=(x-1)\left(x^2+x-20\right) \)[/tex] crosses the [tex]\( x \)[/tex]-axis, we need to find the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].
When the function crosses the [tex]\( x \)[/tex]-axis, the [tex]\( y \)[/tex]-coordinate (i.e., [tex]\( f(x) \)[/tex]) is 0. So, we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
The function given is:
[tex]\[ f(x) = (x-1)(x^2+x-20) \][/tex]
First, we set the function equal to zero:
[tex]\[ (x-1)(x^2 + x - 20) = 0 \][/tex]
For this product to be zero, at least one of the factors must be zero. We will solve for [tex]\( x \)[/tex] by setting each factor to zero separately.
1. [tex]\( x - 1 = 0 \)[/tex]
[tex]\[ x = 1 \][/tex]
2. [tex]\( x^2 + x - 20 = 0 \)[/tex]
We need to solve the quadratic equation [tex]\( x^2 + x - 20 = 0 \)[/tex]. This can be factored as follows:
[tex]\[ x^2 + x - 20 = (x + 5)(x - 4) \][/tex]
By setting each factor equal to zero, we have:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
So, the solutions to the equation [tex]\( (x-1)(x^2+x-20) = 0 \)[/tex] are:
[tex]\[ x = 1, \, x = -5, \, x = 4 \][/tex]
Thus, the ordered pairs where the graph of [tex]\( f(x) \)[/tex] crosses the [tex]\( x \)[/tex]-axis (where [tex]\( y = 0 \)[/tex]) are:
[tex]\[ (1, 0), \, (-5, 0), \, (4, 0) \][/tex]
Out of the provided options, the correct ordered pair is:
[tex]\[ (-5, 0) \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{(-5,0)} \][/tex]
When the function crosses the [tex]\( x \)[/tex]-axis, the [tex]\( y \)[/tex]-coordinate (i.e., [tex]\( f(x) \)[/tex]) is 0. So, we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
The function given is:
[tex]\[ f(x) = (x-1)(x^2+x-20) \][/tex]
First, we set the function equal to zero:
[tex]\[ (x-1)(x^2 + x - 20) = 0 \][/tex]
For this product to be zero, at least one of the factors must be zero. We will solve for [tex]\( x \)[/tex] by setting each factor to zero separately.
1. [tex]\( x - 1 = 0 \)[/tex]
[tex]\[ x = 1 \][/tex]
2. [tex]\( x^2 + x - 20 = 0 \)[/tex]
We need to solve the quadratic equation [tex]\( x^2 + x - 20 = 0 \)[/tex]. This can be factored as follows:
[tex]\[ x^2 + x - 20 = (x + 5)(x - 4) \][/tex]
By setting each factor equal to zero, we have:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
So, the solutions to the equation [tex]\( (x-1)(x^2+x-20) = 0 \)[/tex] are:
[tex]\[ x = 1, \, x = -5, \, x = 4 \][/tex]
Thus, the ordered pairs where the graph of [tex]\( f(x) \)[/tex] crosses the [tex]\( x \)[/tex]-axis (where [tex]\( y = 0 \)[/tex]) are:
[tex]\[ (1, 0), \, (-5, 0), \, (4, 0) \][/tex]
Out of the provided options, the correct ordered pair is:
[tex]\[ (-5, 0) \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{(-5,0)} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.