Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the missing length in Fabian's ratio table, let's follow these steps:
1. Understand the relationship described by the scale factors: The ratio table describes how each dimension changes when multiplied by the given scale factors.
2. Identify the original dimensions and their corresponding scaled dimensions:
- Original width (corresponding to scale factor 1): 6 units
- New width (corresponding to scale factor 2.5): 15 units
- Original length (corresponding to scale factor 1): 9 units
- Missing new length (corresponding to scale factor 2.5): [tex]\(L\)[/tex]
3. Setup proportions for the width to understand the scaling:
- When the width changed from 6 to 15, we can confirm that the width has been scaled by a factor of 2.5 (as expected by the scale factor).
4. Apply the scale factor to the original length:
- The same scale factor is applied to the lengths. Therefore:
[tex]\[ L = \text{Original length} \times \text{Scale factor} \][/tex]
- Substitute the known values:
[tex]\[ L = 9 \times 2.5 \][/tex]
5. Calculate:
- [tex]\( 9 \times 2.5 = 22.5 \)[/tex]
Thus, the missing length in Fabian's table is [tex]\( \boxed{22.5} \)[/tex].
1. Understand the relationship described by the scale factors: The ratio table describes how each dimension changes when multiplied by the given scale factors.
2. Identify the original dimensions and their corresponding scaled dimensions:
- Original width (corresponding to scale factor 1): 6 units
- New width (corresponding to scale factor 2.5): 15 units
- Original length (corresponding to scale factor 1): 9 units
- Missing new length (corresponding to scale factor 2.5): [tex]\(L\)[/tex]
3. Setup proportions for the width to understand the scaling:
- When the width changed from 6 to 15, we can confirm that the width has been scaled by a factor of 2.5 (as expected by the scale factor).
4. Apply the scale factor to the original length:
- The same scale factor is applied to the lengths. Therefore:
[tex]\[ L = \text{Original length} \times \text{Scale factor} \][/tex]
- Substitute the known values:
[tex]\[ L = 9 \times 2.5 \][/tex]
5. Calculate:
- [tex]\( 9 \times 2.5 = 22.5 \)[/tex]
Thus, the missing length in Fabian's table is [tex]\( \boxed{22.5} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.