At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of the discriminant for the quadratic equation and interpret its meaning regarding the number of real solutions, follow these steps:
1. Rewrite the equation in standard form:
The given equation is:
[tex]\[ -2x^2 = -8x + 8 \][/tex]
First, move all terms to one side of the equation to set it equal to zero:
[tex]\[ -2x^2 + 8x - 8 = 0 \][/tex]
Now, the equation is in standard form [tex]\(ax^2 + bx + c = 0\)[/tex], where:
[tex]\[ a = -2, \quad b = 8, \quad c = -8 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plug in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 8^2 - 4(-2)(-8) \][/tex]
[tex]\[ \Delta = 64 - 4 \cdot (-2) \cdot (-8) \][/tex]
[tex]\[ \Delta = 64 - 64 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
3. Interpret the value of the discriminant:
The discriminant value [tex]\(\Delta\)[/tex] determines the nature and number of real solutions of the quadratic equation:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real solution.
- If [tex]\(\Delta < 0\)[/tex], the equation has no real solutions.
Since the discriminant [tex]\(\Delta = 0\)[/tex], this indicates that the equation has exactly one real solution.
Therefore, the correct interpretation is:
- The discriminant is equal to 0, which means the equation has one real number solution.
1. Rewrite the equation in standard form:
The given equation is:
[tex]\[ -2x^2 = -8x + 8 \][/tex]
First, move all terms to one side of the equation to set it equal to zero:
[tex]\[ -2x^2 + 8x - 8 = 0 \][/tex]
Now, the equation is in standard form [tex]\(ax^2 + bx + c = 0\)[/tex], where:
[tex]\[ a = -2, \quad b = 8, \quad c = -8 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plug in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 8^2 - 4(-2)(-8) \][/tex]
[tex]\[ \Delta = 64 - 4 \cdot (-2) \cdot (-8) \][/tex]
[tex]\[ \Delta = 64 - 64 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
3. Interpret the value of the discriminant:
The discriminant value [tex]\(\Delta\)[/tex] determines the nature and number of real solutions of the quadratic equation:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real solution.
- If [tex]\(\Delta < 0\)[/tex], the equation has no real solutions.
Since the discriminant [tex]\(\Delta = 0\)[/tex], this indicates that the equation has exactly one real solution.
Therefore, the correct interpretation is:
- The discriminant is equal to 0, which means the equation has one real number solution.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.