Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
### Solution:
#### Step 1: Define the Hypotheses
We start by defining the null and alternative hypotheses:
- Null Hypothesis [tex]\( H_0 \)[/tex]: [tex]\( p = 0.05 \)[/tex] (The true proportion of dented cans is 5%)
- Alternative Hypothesis [tex]\( H_a \)[/tex]: [tex]\( p > 0.05 \)[/tex] (The true proportion of dented cans is greater than 5%)
#### Step 2: Sample Size and Significance Level
We have a sample size [tex]\( n = 100 \)[/tex] and a significance level of [tex]\( \alpha = 0.05 \)[/tex].
#### Step 3: Sample Proportion
The sample proportion of dented cans is given as 5%, or [tex]\( \hat{p} = 0.05 \)[/tex].
#### Step 4: Population Proportion Under the Null Hypothesis
Under the null hypothesis, the population proportion [tex]\( p_0 = 0.05 \)[/tex].
#### Step 5: Standard Deviation of the Sampling Distribution
The standard deviation for the sampling distribution of the sample proportion is calculated using the formula:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{p_0 (1 - p_0)}{n}} \][/tex]
Given the values:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.05 \times 0.95}{100}} \approx 0.0218 \][/tex]
#### Step 6: Calculate the Z-Score
The z-score for the sample proportion is calculated as:
[tex]\[ z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{0.05 - 0.05}{0.0218} = 0 \][/tex]
#### Step 7: Find the Critical Value
For a significance level of [tex]\( \alpha = 0.05 \)[/tex] and a right-tailed test, we need to find the critical value. The critical value for [tex]\( \alpha = 0.05 \)[/tex] is:
[tex]\[ z_{0.05} \approx 1.645 \][/tex]
#### Step 8: Compare the Z-Score to the Critical Value
We compare the calculated z-score to the critical value:
[tex]\[ z = 0 \quad \text{and} \quad z_{0.05} = 1.645 \][/tex]
Since [tex]\( 0 \leq 1.645 \)[/tex], we fail to reject the null hypothesis.
#### Conclusion
Since we fail to reject the null hypothesis, we conclude that there is not enough evidence to suggest that the proportion of dented cans is greater than 5%. Therefore, the manager should continue to run the machines.
### Implications of Errors
1. Type I Error (Rejecting [tex]\( H_0 \)[/tex] when it is true):
- Consequence: The manager will shut down the machines for repair at great cost, unnecessarily.
2. Type II Error (Failing to reject [tex]\( H_0 \)[/tex] when it is false):
- Consequence: The manager will let the machines continue to run, which will continue to damage more than 5% of the cans. Profit will be lost, and the machines will still need to be repaired.
By carefully setting up and interpreting this hypothesis test, the manager can make a more informed decision regarding whether to shut down the machines for repairs or not.
#### Step 1: Define the Hypotheses
We start by defining the null and alternative hypotheses:
- Null Hypothesis [tex]\( H_0 \)[/tex]: [tex]\( p = 0.05 \)[/tex] (The true proportion of dented cans is 5%)
- Alternative Hypothesis [tex]\( H_a \)[/tex]: [tex]\( p > 0.05 \)[/tex] (The true proportion of dented cans is greater than 5%)
#### Step 2: Sample Size and Significance Level
We have a sample size [tex]\( n = 100 \)[/tex] and a significance level of [tex]\( \alpha = 0.05 \)[/tex].
#### Step 3: Sample Proportion
The sample proportion of dented cans is given as 5%, or [tex]\( \hat{p} = 0.05 \)[/tex].
#### Step 4: Population Proportion Under the Null Hypothesis
Under the null hypothesis, the population proportion [tex]\( p_0 = 0.05 \)[/tex].
#### Step 5: Standard Deviation of the Sampling Distribution
The standard deviation for the sampling distribution of the sample proportion is calculated using the formula:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{p_0 (1 - p_0)}{n}} \][/tex]
Given the values:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.05 \times 0.95}{100}} \approx 0.0218 \][/tex]
#### Step 6: Calculate the Z-Score
The z-score for the sample proportion is calculated as:
[tex]\[ z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{0.05 - 0.05}{0.0218} = 0 \][/tex]
#### Step 7: Find the Critical Value
For a significance level of [tex]\( \alpha = 0.05 \)[/tex] and a right-tailed test, we need to find the critical value. The critical value for [tex]\( \alpha = 0.05 \)[/tex] is:
[tex]\[ z_{0.05} \approx 1.645 \][/tex]
#### Step 8: Compare the Z-Score to the Critical Value
We compare the calculated z-score to the critical value:
[tex]\[ z = 0 \quad \text{and} \quad z_{0.05} = 1.645 \][/tex]
Since [tex]\( 0 \leq 1.645 \)[/tex], we fail to reject the null hypothesis.
#### Conclusion
Since we fail to reject the null hypothesis, we conclude that there is not enough evidence to suggest that the proportion of dented cans is greater than 5%. Therefore, the manager should continue to run the machines.
### Implications of Errors
1. Type I Error (Rejecting [tex]\( H_0 \)[/tex] when it is true):
- Consequence: The manager will shut down the machines for repair at great cost, unnecessarily.
2. Type II Error (Failing to reject [tex]\( H_0 \)[/tex] when it is false):
- Consequence: The manager will let the machines continue to run, which will continue to damage more than 5% of the cans. Profit will be lost, and the machines will still need to be repaired.
By carefully setting up and interpreting this hypothesis test, the manager can make a more informed decision regarding whether to shut down the machines for repairs or not.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.