Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze each of the given equations to determine if they could represent the line [tex]\( f(x) = 4x + 3 \)[/tex] that passes through the point [tex]\((1,7)\)[/tex].
### 1. Equation: [tex]\( y - 7 = 3(x - 1) \)[/tex]
First, we need to rewrite this equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]):
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 7 = 3(x - 1) \\ y - 7 = 3x - 3 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 3 + 7 \\ y = 3x + 4 \][/tex]
The slope ([tex]\( m \)[/tex]) is 3 and the y-intercept is 4. This does not match our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. So, the first equation does not represent the same line.
### 2. Equation: [tex]\( y - 1 = 3(x - 7) \)[/tex]
Next, we transform this equation to slope-intercept form:
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 1 = 3(x - 7) \\ y - 1 = 3x - 21 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 21 + 1 \\ y = 3x - 20 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 3 and the y-intercept is -20. This also does not match our original line equation. Thus, the second equation does not represent the same line.
### 3. Equation: [tex]\( y - 7 = 4(x - 1) \)[/tex]
Let’s rewrite this equation in slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 7 = 4(x - 1) \\ y - 7 = 4x - 4 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 4 + 7 \\ y = 4x + 3 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 4 and the y-intercept is 3. This matches our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. Therefore, the third equation represents the same line.
### 4. Equation: [tex]\( y - 1 = 4(x - 7) \)[/tex]
Finally, transform this to slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 1 = 4(x - 7) \\ y - 1 = 4x - 28 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 28 + 1 \\ y = 4x - 27 \][/tex]
The slope ([tex]\( m \)[/tex]) is 4 but the y-intercept is -27. This does not match our original line's intercept. Thus, the fourth equation does not represent the same line.
### Conclusion
Out of the four given equations, only [tex]\( y - 7 = 4(x - 1) \)[/tex] represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex].
### 1. Equation: [tex]\( y - 7 = 3(x - 1) \)[/tex]
First, we need to rewrite this equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]):
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 7 = 3(x - 1) \\ y - 7 = 3x - 3 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 3 + 7 \\ y = 3x + 4 \][/tex]
The slope ([tex]\( m \)[/tex]) is 3 and the y-intercept is 4. This does not match our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. So, the first equation does not represent the same line.
### 2. Equation: [tex]\( y - 1 = 3(x - 7) \)[/tex]
Next, we transform this equation to slope-intercept form:
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 1 = 3(x - 7) \\ y - 1 = 3x - 21 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 21 + 1 \\ y = 3x - 20 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 3 and the y-intercept is -20. This also does not match our original line equation. Thus, the second equation does not represent the same line.
### 3. Equation: [tex]\( y - 7 = 4(x - 1) \)[/tex]
Let’s rewrite this equation in slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 7 = 4(x - 1) \\ y - 7 = 4x - 4 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 4 + 7 \\ y = 4x + 3 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 4 and the y-intercept is 3. This matches our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. Therefore, the third equation represents the same line.
### 4. Equation: [tex]\( y - 1 = 4(x - 7) \)[/tex]
Finally, transform this to slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 1 = 4(x - 7) \\ y - 1 = 4x - 28 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 28 + 1 \\ y = 4x - 27 \][/tex]
The slope ([tex]\( m \)[/tex]) is 4 but the y-intercept is -27. This does not match our original line's intercept. Thus, the fourth equation does not represent the same line.
### Conclusion
Out of the four given equations, only [tex]\( y - 7 = 4(x - 1) \)[/tex] represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.