Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze each of the given equations to determine if they could represent the line [tex]\( f(x) = 4x + 3 \)[/tex] that passes through the point [tex]\((1,7)\)[/tex].
### 1. Equation: [tex]\( y - 7 = 3(x - 1) \)[/tex]
First, we need to rewrite this equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]):
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 7 = 3(x - 1) \\ y - 7 = 3x - 3 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 3 + 7 \\ y = 3x + 4 \][/tex]
The slope ([tex]\( m \)[/tex]) is 3 and the y-intercept is 4. This does not match our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. So, the first equation does not represent the same line.
### 2. Equation: [tex]\( y - 1 = 3(x - 7) \)[/tex]
Next, we transform this equation to slope-intercept form:
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 1 = 3(x - 7) \\ y - 1 = 3x - 21 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 21 + 1 \\ y = 3x - 20 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 3 and the y-intercept is -20. This also does not match our original line equation. Thus, the second equation does not represent the same line.
### 3. Equation: [tex]\( y - 7 = 4(x - 1) \)[/tex]
Let’s rewrite this equation in slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 7 = 4(x - 1) \\ y - 7 = 4x - 4 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 4 + 7 \\ y = 4x + 3 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 4 and the y-intercept is 3. This matches our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. Therefore, the third equation represents the same line.
### 4. Equation: [tex]\( y - 1 = 4(x - 7) \)[/tex]
Finally, transform this to slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 1 = 4(x - 7) \\ y - 1 = 4x - 28 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 28 + 1 \\ y = 4x - 27 \][/tex]
The slope ([tex]\( m \)[/tex]) is 4 but the y-intercept is -27. This does not match our original line's intercept. Thus, the fourth equation does not represent the same line.
### Conclusion
Out of the four given equations, only [tex]\( y - 7 = 4(x - 1) \)[/tex] represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex].
### 1. Equation: [tex]\( y - 7 = 3(x - 1) \)[/tex]
First, we need to rewrite this equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]):
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 7 = 3(x - 1) \\ y - 7 = 3x - 3 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 3 + 7 \\ y = 3x + 4 \][/tex]
The slope ([tex]\( m \)[/tex]) is 3 and the y-intercept is 4. This does not match our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. So, the first equation does not represent the same line.
### 2. Equation: [tex]\( y - 1 = 3(x - 7) \)[/tex]
Next, we transform this equation to slope-intercept form:
1. Distribute the 3 on the right-hand side:
[tex]\[ y - 1 = 3(x - 7) \\ y - 1 = 3x - 21 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 3x - 21 + 1 \\ y = 3x - 20 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 3 and the y-intercept is -20. This also does not match our original line equation. Thus, the second equation does not represent the same line.
### 3. Equation: [tex]\( y - 7 = 4(x - 1) \)[/tex]
Let’s rewrite this equation in slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 7 = 4(x - 1) \\ y - 7 = 4x - 4 \][/tex]
2. Add 7 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 4 + 7 \\ y = 4x + 3 \][/tex]
The slope ([tex]\( m \)[/tex]) here is 4 and the y-intercept is 3. This matches our original line equation [tex]\( f(x) = 4x + 3 \)[/tex]. Therefore, the third equation represents the same line.
### 4. Equation: [tex]\( y - 1 = 4(x - 7) \)[/tex]
Finally, transform this to slope-intercept form:
1. Distribute the 4 on the right-hand side:
[tex]\[ y - 1 = 4(x - 7) \\ y - 1 = 4x - 28 \][/tex]
2. Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 4x - 28 + 1 \\ y = 4x - 27 \][/tex]
The slope ([tex]\( m \)[/tex]) is 4 but the y-intercept is -27. This does not match our original line's intercept. Thus, the fourth equation does not represent the same line.
### Conclusion
Out of the four given equations, only [tex]\( y - 7 = 4(x - 1) \)[/tex] represents the same line as [tex]\( f(x) = 4x + 3 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.