Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To analyze the function [tex]\( r(x) = 0.05(x^2 + 1)(x - 6) \)[/tex] and determine the behavior of the population based on its instantaneous growth rate, we need to identify the zeros of the function and understand the intervals where the function is positive or negative.
### Step-by-Step Solution
1. Identify Potential Zeros:
The function [tex]\( r(x) = 0.05(x^2 + 1)(x - 6) \)[/tex] is determined by solving [tex]\( r(x) = 0 \)[/tex].
- There are two factors:
[tex]\[ 0.05(x^2 + 1) \quad \text{and} \quad (x - 6) \][/tex]
- Setting each factor to zero gives us the potential zeros:
[tex]\[ x^2 + 1 = 0 \quad \text{and} \quad x - 6 = 0 \][/tex]
- Solving [tex]\( x^2 + 1 = 0 \)[/tex] we get:
[tex]\[ x^2 = -1 \Rightarrow \text{No real solutions (as the square of a real number cannot be negative)} \][/tex]
- Solving [tex]\( x - 6 = 0 \)[/tex] we get:
[tex]\[ x = 6 \][/tex]
2. Determine Real Zeros:
- Thus, the only real zero from [tex]\( r(x) \)[/tex] is [tex]\( x = 6 \)[/tex].
3. Analyze the Interval Signs:
- To determine whether [tex]\( r(x) \)[/tex] is positive or negative around the zero, look at intervals defined by the zero [tex]\( x = 6 \)[/tex]:
[tex]\[ (x < 6) \quad \text{and} \quad (x > 6) \][/tex]
4. Local Behavior of The Function (Instantaneous Growth Rate):
- For [tex]\( x < 6 \)[/tex]:
- The term [tex]\( x - 6 \)[/tex] is negative.
- The term [tex]\( x^2 + 1 \)[/tex] is always positive (since any real number squared plus 1 is positive).
- Combining these: [tex]\( 0.05(x^2 + 1)(x - 6) \)[/tex] is negative.
- Therefore, [tex]\( r(x) < 0 \)[/tex] for [tex]\( x < 6 \)[/tex], indicating that the population decreases.
- For [tex]\( x > 6 \)[/tex]:
- The term [tex]\( x - 6 \)[/tex] is positive.
- Again, the term [tex]\( x^2 + 1 \)[/tex] is positive.
- Combining these: [tex]\( 0.05(x^2 + 1)(x - 6) \)[/tex] is positive.
- Therefore, [tex]\( r(x) > 0 \)[/tex] for [tex]\( x > 6 \)[/tex], indicating that the population increases.
### Complete The Statements:
1. Zeros:
- Function [tex]\( r \)[/tex] has one real zero (since [tex]\( x = 6 \)[/tex] is the only real zero).
2. Population Behavior:
- Based on the instantaneous growth rate, the population decreased between 0 and [tex]\( \boxed{6} \)[/tex] days and the population increased after [tex]\( \boxed{6} \)[/tex] days.
### Step-by-Step Solution
1. Identify Potential Zeros:
The function [tex]\( r(x) = 0.05(x^2 + 1)(x - 6) \)[/tex] is determined by solving [tex]\( r(x) = 0 \)[/tex].
- There are two factors:
[tex]\[ 0.05(x^2 + 1) \quad \text{and} \quad (x - 6) \][/tex]
- Setting each factor to zero gives us the potential zeros:
[tex]\[ x^2 + 1 = 0 \quad \text{and} \quad x - 6 = 0 \][/tex]
- Solving [tex]\( x^2 + 1 = 0 \)[/tex] we get:
[tex]\[ x^2 = -1 \Rightarrow \text{No real solutions (as the square of a real number cannot be negative)} \][/tex]
- Solving [tex]\( x - 6 = 0 \)[/tex] we get:
[tex]\[ x = 6 \][/tex]
2. Determine Real Zeros:
- Thus, the only real zero from [tex]\( r(x) \)[/tex] is [tex]\( x = 6 \)[/tex].
3. Analyze the Interval Signs:
- To determine whether [tex]\( r(x) \)[/tex] is positive or negative around the zero, look at intervals defined by the zero [tex]\( x = 6 \)[/tex]:
[tex]\[ (x < 6) \quad \text{and} \quad (x > 6) \][/tex]
4. Local Behavior of The Function (Instantaneous Growth Rate):
- For [tex]\( x < 6 \)[/tex]:
- The term [tex]\( x - 6 \)[/tex] is negative.
- The term [tex]\( x^2 + 1 \)[/tex] is always positive (since any real number squared plus 1 is positive).
- Combining these: [tex]\( 0.05(x^2 + 1)(x - 6) \)[/tex] is negative.
- Therefore, [tex]\( r(x) < 0 \)[/tex] for [tex]\( x < 6 \)[/tex], indicating that the population decreases.
- For [tex]\( x > 6 \)[/tex]:
- The term [tex]\( x - 6 \)[/tex] is positive.
- Again, the term [tex]\( x^2 + 1 \)[/tex] is positive.
- Combining these: [tex]\( 0.05(x^2 + 1)(x - 6) \)[/tex] is positive.
- Therefore, [tex]\( r(x) > 0 \)[/tex] for [tex]\( x > 6 \)[/tex], indicating that the population increases.
### Complete The Statements:
1. Zeros:
- Function [tex]\( r \)[/tex] has one real zero (since [tex]\( x = 6 \)[/tex] is the only real zero).
2. Population Behavior:
- Based on the instantaneous growth rate, the population decreased between 0 and [tex]\( \boxed{6} \)[/tex] days and the population increased after [tex]\( \boxed{6} \)[/tex] days.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.