Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine how much energy is released by the reaction, we will use the formula for heat transfer:
[tex]\[ q = m C_p \Delta T \][/tex]
Here,
- [tex]\( q \)[/tex] stands for the heat energy released,
- [tex]\( m \)[/tex] represents the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity of the calorimeter,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
Given:
- The mass of the calorimeter, [tex]\( m \)[/tex], is 1.350 kg. First, we need to convert this mass to grams (since the specific heat capacity is in J/(g·°C)):
[tex]\[ 1.350 \, \text{kg} \times 1000 \, \text{g/kg} = 1350 \, \text{g} \][/tex]
- The specific heat capacity, [tex]\( C_p \)[/tex], is 5.82 J/(g·°C).
- The change in temperature, [tex]\( \Delta T \)[/tex], is 2.87°C.
Using the heat transfer formula:
[tex]\[ q = m C_p \Delta T \][/tex]
[tex]\[ q = 1350 \, \text{g} \times 5.82 \, \frac{\text{J}}{\text{g} \cdot \, ^{\circ} \text{C}} \times 2.87 \, ^{\circ} \text{C} \][/tex]
Multiply these values:
[tex]\[ q = 1350 \times 5.82 \times 2.87 \][/tex]
[tex]\[ q = 22549.59 \, \text{J} \][/tex]
To convert Joules to kilojoules (since 1 kJ = 1000 J):
[tex]\[ q = \frac{22549.59 \, \text{J}}{1000} \][/tex]
[tex]\[ q = 22.55 \, \text{kJ} \][/tex]
Therefore, the energy released by the reaction is approximately 22.5 kJ. So, the correct answer is:
[tex]\[ \boxed{22.5 \, \text{kJ}} \][/tex]
[tex]\[ q = m C_p \Delta T \][/tex]
Here,
- [tex]\( q \)[/tex] stands for the heat energy released,
- [tex]\( m \)[/tex] represents the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity of the calorimeter,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
Given:
- The mass of the calorimeter, [tex]\( m \)[/tex], is 1.350 kg. First, we need to convert this mass to grams (since the specific heat capacity is in J/(g·°C)):
[tex]\[ 1.350 \, \text{kg} \times 1000 \, \text{g/kg} = 1350 \, \text{g} \][/tex]
- The specific heat capacity, [tex]\( C_p \)[/tex], is 5.82 J/(g·°C).
- The change in temperature, [tex]\( \Delta T \)[/tex], is 2.87°C.
Using the heat transfer formula:
[tex]\[ q = m C_p \Delta T \][/tex]
[tex]\[ q = 1350 \, \text{g} \times 5.82 \, \frac{\text{J}}{\text{g} \cdot \, ^{\circ} \text{C}} \times 2.87 \, ^{\circ} \text{C} \][/tex]
Multiply these values:
[tex]\[ q = 1350 \times 5.82 \times 2.87 \][/tex]
[tex]\[ q = 22549.59 \, \text{J} \][/tex]
To convert Joules to kilojoules (since 1 kJ = 1000 J):
[tex]\[ q = \frac{22549.59 \, \text{J}}{1000} \][/tex]
[tex]\[ q = 22.55 \, \text{kJ} \][/tex]
Therefore, the energy released by the reaction is approximately 22.5 kJ. So, the correct answer is:
[tex]\[ \boxed{22.5 \, \text{kJ}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.