Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To factor the polynomial expression [tex]\(3x^3 + 3x^2 - 18x\)[/tex], we can follow these steps:
1. Factor out the greatest common factor (GCF):
First, observe that each term in the polynomial shares a common factor of [tex]\(3x\)[/tex]. We can factor out [tex]\(3x\)[/tex] from the expression:
[tex]\[ 3x (x^2 + x - 6) \][/tex]
2. Factor the quadratic expression inside the parentheses:
Now, we need to factor the quadratic expression [tex]\(x^2 + x - 6\)[/tex]. To do this, we look for two numbers that multiply to [tex]\(-6\)[/tex] (the constant term) and add up to [tex]\(1\)[/tex] (the coefficient of the linear term).
The numbers [tex]\(-2\)[/tex] and [tex]\(3\)[/tex] meet these criteria because:
[tex]\[ -2 \cdot 3 = -6 \][/tex]
[tex]\[ -2 + 3 = 1 \][/tex]
Therefore, we can write the quadratic expression as:
[tex]\[ x^2 + x - 6 = (x - 2)(x + 3) \][/tex]
3. Combine the factored terms:
Substitute the factored quadratic back into the expression:
[tex]\[ 3x (x - 2)(x + 3) \][/tex]
Therefore, the fully factored form of the polynomial [tex]\(3x^3 + 3x^2 - 18x\)[/tex] is:
[tex]\[ 3x (x - 2)(x + 3) \][/tex]
Among the given options, the correct answer is:
[tex]\[ 3x (x + 3)(x - 2) \][/tex]
1. Factor out the greatest common factor (GCF):
First, observe that each term in the polynomial shares a common factor of [tex]\(3x\)[/tex]. We can factor out [tex]\(3x\)[/tex] from the expression:
[tex]\[ 3x (x^2 + x - 6) \][/tex]
2. Factor the quadratic expression inside the parentheses:
Now, we need to factor the quadratic expression [tex]\(x^2 + x - 6\)[/tex]. To do this, we look for two numbers that multiply to [tex]\(-6\)[/tex] (the constant term) and add up to [tex]\(1\)[/tex] (the coefficient of the linear term).
The numbers [tex]\(-2\)[/tex] and [tex]\(3\)[/tex] meet these criteria because:
[tex]\[ -2 \cdot 3 = -6 \][/tex]
[tex]\[ -2 + 3 = 1 \][/tex]
Therefore, we can write the quadratic expression as:
[tex]\[ x^2 + x - 6 = (x - 2)(x + 3) \][/tex]
3. Combine the factored terms:
Substitute the factored quadratic back into the expression:
[tex]\[ 3x (x - 2)(x + 3) \][/tex]
Therefore, the fully factored form of the polynomial [tex]\(3x^3 + 3x^2 - 18x\)[/tex] is:
[tex]\[ 3x (x - 2)(x + 3) \][/tex]
Among the given options, the correct answer is:
[tex]\[ 3x (x + 3)(x - 2) \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.