Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The table shows the wavelength of the sound produced by keys on a piano [tex]$x$[/tex] keys away from the A above middle C.

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Number of keys above the \\
A above middle C
\end{tabular} & \begin{tabular}{c}
Wavelength \\
(cm)
\end{tabular} \\
\hline
0 & 78.41 \\
\hline
2 & 69.85 \\
\hline
3 & 65.93 \\
\hline
6 & 55.44 \\
\hline
10 & 44.01 \\
\hline
\end{tabular}

Using the exponential regression model, which is the best prediction of the wavelength of the key that is 8 keys above the A above middle C?

A. 49.31 cm
B. 49.44 cm
C. 49.73 cm
D. 49.78 cm

Sagot :

To determine the best prediction for the wavelength of the key that is 8 above the A above middle C using an exponential regression model, we can follow these steps:

1. Collect the Data:
The data provided gives us the number of keys above the A above middle C and their corresponding wavelengths.

[tex]\[ \begin{align*} x &: \{ 0, 2, 3, 6, 10 \} \\ y &: \{ 78.41, 69.85, 65.93, 55.44, 44.01 \} \\ \end{align*} \][/tex]

2. Model Identification:
We are asked to use an exponential regression model. This means we assume the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be modeled with an equation of the form:
[tex]\[ y = a \cdot b^x \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.

3. Transform to a Linear Model:
By taking the natural logarithm of both sides of the equation, we can linearize the model:
[tex]\[ \ln(y) = \ln(a \cdot b^x) \][/tex]
[tex]\[ \ln(y) = \ln(a) + x \cdot \ln(b) \][/tex]
Letting [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex], the model becomes:
[tex]\[ Y = A + Bx \][/tex]
Thus, we perform a linear regression on [tex]\( x \)[/tex] vs. [tex]\( \ln(y) \)[/tex].

4. Find the Coefficients:
Using linear regression on the transformed data:
[tex]\[ x: \{ 0, 2, 3, 6, 10 \} \][/tex]
[tex]\[ Y: \{ 4.361951470242831, 4.246350085702971, 4.188593573125209, 4.015301354881648, 3.784416880823 \} \][/tex]
The linear regression yields coefficients that represent [tex]\( \ln(a) \)[/tex] and [tex]\( \ln(b) \)[/tex]:
[tex]\[ \ln(y) = -0.05775194578546567 \cdot x + 4.361880845254086 \][/tex]
Therefore:
[tex]\[ A = 4.361880845254086, \quad B = -0.05775194578546567 \][/tex]
Converting back:
[tex]\[ a = e^{A} \approx 78.40446249017809 \][/tex]
[tex]\[ b = e^{B} \approx 0.9438840528175181 \][/tex]

5. Prediction for 8 Keys Above:
Using the exponential model [tex]\( y = a \cdot b^x \)[/tex]:
[tex]\[ y(8) = 78.40446249017809 \cdot (0.9438840528175181)^8 \][/tex]
This calculation gives:
[tex]\[ y(8) \approx 49.39579400502101 \text{ cm} \][/tex]

6. Closest Given Option:
We compare this predicted value to the provided options: [tex]\( 49.31 \)[/tex], [tex]\( 49.44 \)[/tex], [tex]\( 49.73 \)[/tex], and [tex]\( 49.78 \)[/tex] cm. The closest value to [tex]\( 49.39579400502101 \)[/tex] cm is [tex]\( 49.44 \)[/tex] cm.

Therefore, the best prediction for the wavelength of the key that is 8 above the A above middle C is:
[tex]\[ \boxed{49.44 \text{ cm}} \][/tex]