At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To factor the polynomial [tex]\( 8x^3 + 2x^2 - 20x - 5 \)[/tex] by grouping, we can follow these steps:
1. Group Terms: First, we can group the terms in pairs to facilitate factorization by grouping:
[tex]\[ 8x^3 + 2x^2 - 20x - 5 = (8x^3 + 2x^2) + (-20x - 5) \][/tex]
2. Factor Each Group: Next, we factor out the greatest common factor (GCF) from each group:
[tex]\[ (8x^3 + 2x^2) + (-20x - 5) = 2x^2(4x + 1) - 5(4x + 1) \][/tex]
3. Factor Out the Common Binomial Factor: Notice the common binomial factor [tex]\((4x + 1)\)[/tex] in both groups. We can factor this out:
[tex]\[ 2x^2(4x + 1) - 5(4x + 1) = (4x + 1)(2x^2 - 5) \][/tex]
4. Verify the Factorization: To ensure the factorization is correct, we can expand the factored form and check if it matches the original polynomial:
[tex]\[ (4x + 1)(2x^2 - 5) = 4x(2x^2) - 4x(5) + 1(2x^2) - 1(5) = 8x^3 - 20x + 2x^2 - 5 \][/tex]
This matches the original polynomial.
Thus, the factored form of [tex]\( 8x^3 + 2x^2 - 20x - 5 \)[/tex] by grouping is:
[tex]\[ (4x + 1)(2x^2 - 5) \][/tex]
Let’s map each expression to its correct place in the solution:
[tex]\[ 8 x^3+2 x^2-20 x-5 = (8 x^3+2x^2) + (-20x - 5) \][/tex]
[tex]\[ (8 x^3+2x^2)+(-20x-5) = 2 x^2(4 x + 1) - 5(4 x + 1) \][/tex]
[tex]\(\boxed{4x+1}\)[/tex]
[tex]\(\boxed{-5}\)[/tex]
Thus:
[tex]\[ 8 x^3 + 2 x^2 - 20 x - 5 = (4x + 1)(2x^2 - 5) \][/tex]
1. Group Terms: First, we can group the terms in pairs to facilitate factorization by grouping:
[tex]\[ 8x^3 + 2x^2 - 20x - 5 = (8x^3 + 2x^2) + (-20x - 5) \][/tex]
2. Factor Each Group: Next, we factor out the greatest common factor (GCF) from each group:
[tex]\[ (8x^3 + 2x^2) + (-20x - 5) = 2x^2(4x + 1) - 5(4x + 1) \][/tex]
3. Factor Out the Common Binomial Factor: Notice the common binomial factor [tex]\((4x + 1)\)[/tex] in both groups. We can factor this out:
[tex]\[ 2x^2(4x + 1) - 5(4x + 1) = (4x + 1)(2x^2 - 5) \][/tex]
4. Verify the Factorization: To ensure the factorization is correct, we can expand the factored form and check if it matches the original polynomial:
[tex]\[ (4x + 1)(2x^2 - 5) = 4x(2x^2) - 4x(5) + 1(2x^2) - 1(5) = 8x^3 - 20x + 2x^2 - 5 \][/tex]
This matches the original polynomial.
Thus, the factored form of [tex]\( 8x^3 + 2x^2 - 20x - 5 \)[/tex] by grouping is:
[tex]\[ (4x + 1)(2x^2 - 5) \][/tex]
Let’s map each expression to its correct place in the solution:
[tex]\[ 8 x^3+2 x^2-20 x-5 = (8 x^3+2x^2) + (-20x - 5) \][/tex]
[tex]\[ (8 x^3+2x^2)+(-20x-5) = 2 x^2(4 x + 1) - 5(4 x + 1) \][/tex]
[tex]\(\boxed{4x+1}\)[/tex]
[tex]\(\boxed{-5}\)[/tex]
Thus:
[tex]\[ 8 x^3 + 2 x^2 - 20 x - 5 = (4x + 1)(2x^2 - 5) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.