Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given the function [tex]\( r(x) = 0.05(x^2 + 1)(x - 6) \)[/tex], we can determine certain characteristics of the population growth over time by analyzing where the function intersects the x-axis (its zeros) and the behavior of the function at specific points.
### Zeros of the Function
#### Complex Zeros
Analyzing the function, [tex]\( r(x) \)[/tex]:
- [tex]\( r(x) = 0 \)[/tex] when [tex]\( x^2 + 1 = 0 \)[/tex] or [tex]\( x - 6 = 0 \)[/tex].
- The quadratic [tex]\( x^2 + 1 = 0 \implies x^2 = -1 \)[/tex], which gives solutions [tex]\( x = \pm i \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit. These are complex roots.
#### Real Zeros
- [tex]\( x - 6 = 0 \implies x = 6 \)[/tex]. This is a real root.
- Thus, function [tex]\( r \)[/tex] has exactly one real zero.
### Growth Rate at [tex]\( x = 6 \)[/tex]
- To find whether the population increased or decreased after day 6, we substitute [tex]\( x = 6 \)[/tex] into the function.
- [tex]\( r(6) = 0.05(6^2 + 1)(6 - 6) = 0.05(37)(0) = 0 \)[/tex].
Since [tex]\( r(6) = 0 \)[/tex], the instantaneous growth rate at day 6 is zero, implying no change in population growth exactly at day 6. However, to decide if the population increased after day 6, we need to analyze values slightly greater than 6. Given that the coefficient of [tex]\( x^2 \)[/tex] is positive in the quadratic term [tex]\( x^2 + 1 \)[/tex], the overall function [tex]\( r(x) = 0.05(x^2 + 1)(x - 6) \)[/tex] will start negative for values slightly greater than 6, indicating a decrease in the population rate after day 6.
### Summary of Statements:
1. Function [tex]\( r \)[/tex] has two complex zeros.
2. Function [tex]\( r \)[/tex] has one real zero.
3. The population decreased after day 6.
In conclusion:
Function [tex]\( r \)[/tex] has two complex zeros, one real zero, and the population decreased after 6 days.
### Zeros of the Function
#### Complex Zeros
Analyzing the function, [tex]\( r(x) \)[/tex]:
- [tex]\( r(x) = 0 \)[/tex] when [tex]\( x^2 + 1 = 0 \)[/tex] or [tex]\( x - 6 = 0 \)[/tex].
- The quadratic [tex]\( x^2 + 1 = 0 \implies x^2 = -1 \)[/tex], which gives solutions [tex]\( x = \pm i \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit. These are complex roots.
#### Real Zeros
- [tex]\( x - 6 = 0 \implies x = 6 \)[/tex]. This is a real root.
- Thus, function [tex]\( r \)[/tex] has exactly one real zero.
### Growth Rate at [tex]\( x = 6 \)[/tex]
- To find whether the population increased or decreased after day 6, we substitute [tex]\( x = 6 \)[/tex] into the function.
- [tex]\( r(6) = 0.05(6^2 + 1)(6 - 6) = 0.05(37)(0) = 0 \)[/tex].
Since [tex]\( r(6) = 0 \)[/tex], the instantaneous growth rate at day 6 is zero, implying no change in population growth exactly at day 6. However, to decide if the population increased after day 6, we need to analyze values slightly greater than 6. Given that the coefficient of [tex]\( x^2 \)[/tex] is positive in the quadratic term [tex]\( x^2 + 1 \)[/tex], the overall function [tex]\( r(x) = 0.05(x^2 + 1)(x - 6) \)[/tex] will start negative for values slightly greater than 6, indicating a decrease in the population rate after day 6.
### Summary of Statements:
1. Function [tex]\( r \)[/tex] has two complex zeros.
2. Function [tex]\( r \)[/tex] has one real zero.
3. The population decreased after day 6.
In conclusion:
Function [tex]\( r \)[/tex] has two complex zeros, one real zero, and the population decreased after 6 days.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.